An Automata Theory Method for
the Analysis of Unicycle Pursuit
Problems

David Dovrat

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

An Automata Theory Method for
the Analysis of Unicycle Pursuit
Problems

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

David Dovrat

Submitted to the Senate
of the Technion — Israel Institute of Technology
Shvat 5782 Haifa January 2022

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

The research thesis was done under the supervision of Prof. Alfred M. Bruckstein, in

the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral

research period, the most up-to-date versions of which being;:

David Dovrat and Alfred M. Bruckstein. On gathering and control of unicycle a(ge)nts with
crude sensing capabilities. IEEE Intelligent Systems, 32(6):40-46, 2017.

David Dovrat and Alfred M. Bruckstein. Antalate—a multi-agent autonomy framework.
Frontiers in Robotics and Al, 8:264, 2021.

David Dovrat, Twinkle Tripathy, and Alfred M. Bruckstein. On tracking and capture in
proportional-control bearing-only unicycle pursuit. IEEE Control Systems Letters, 6:2132—
2137, 2022.

The generous financial help of the Technion is gratefully acknowledged.

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Contents

List of Tables

List of Figures

Abstract 1
Abbreviations and Notations 3
1 Introduction 5
2 Method

2.1 Dynamics of Pursuit

2.2 Automaton Generating Algorithm

3 Tracking and Capture in Proportional-Control Bearing-Only Unicycle

Pursuit 13
3.1 Preliminaries 13
3.1.1 Pure Pursuit 13

3.1.2 Proportional-Control Bearing-Only Unicycle Pursuit 14

3.2 Lyapunov Function Approach 15
3.3 Tracking e 19
3.4 Capture 50
3.5 Simulation 74

4 Homing of Unicycle Agents with Crude Sensing Capabilities 77
4.1 Unicycle-Agents with Crude Sensing over a Limited Sector of Visibility . 77
4.1.1 UCSLSV Problem Statement 78

4.2 System States 78
4.3 State Transitions 79
4.4 Pathsand Cyclesin G 84

5 AntAlate 91
5.1 Introduction 91

5.2 Method e 95

5.2.1 AntAlate Core 95

5.2.2 AntAlate Design Space 99

5.3 Results. e 102
5.4 DiscussSion 108

6 Discussion and Conclusion 111

Hebrew Abstract i

List of Tables

3.1 PCBOUP: Classification of Configurations to States 21
3.2 PCBOUP: Transition Table 42
3.3 PCBOUP: Capture States 51
3.4 PCBOUP: Extended Transition Table 64
4.1 UCSLSV: Classification of Configurations to States 80

4.2 UCSLSV: Transition Table 85

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

4.1
4.2
4.3
4.4
4.5

5.1

The Unicycle Model 8
Pursuit as a Robotic Arm 8
The Unicycle Pursuit Problem 14
PCBOUP Primary States., 19
PCBOUP Typical Configuration. 20
PCBOUP: State A Exit Condition 22
PCBOUP: State B Exit Conditions 28
PCBOUP: State C' Exit Conditions 33
PCBOUP: State D Exit Conditions 37
PCBOUP: DFSM e e e e 41
PCBOUP: State B as part of apathinGg 44
PCBOUP: State C aspartofapathin G 44
PCBOUP: State D as part of apathinG 45
PCBOUP: Capture States 52
PCBOUP: Capture States Configuration 53
PCBOUP: State W Exit Conditions 55
PCBOUP: State Y Exit Conditions 59
PCBOUP: State Z Exit Conditions 62
PCBOUP: Extended DFSM 63
PCBOUP: State W Contribution toI" 65
PCBOUP: State Z Contributionto I' 70
PCBOUP: Reverse Flow Paths 73
PCBOUP: Simulation 74
PCBOUP: Hlustrating Simulation of Capture Regions 76
The Homing Problem. 78
UCSLSV: The B—-b—BCycle 81
UCSLSV: DFSM e 86
UCSLSV: Thea -b—aCycle. 87
UCSLSV: Close Encounters with the Beacon 89

AntAlate: Core Components 96

5.2
5.3
5.4
9.5
5.6
2.7
5.8
5.9
5.10
5.11
5.12
5.13

AntAlate: Mission Control State Machine 97

AntAlate: High-Level Control State Machine 98
AntAlate: Minimal Deployment 99
AntAlate: Behavior Module Arbiter Class Diagram 100
AntAlate: High Level Control Class Diagram 102
Multi-Agent UCSLSV 103
UCSLSV ROS Implementation 104
Multi-Agent UCSLSV Implemented with ROS 105
UCSLSV AntAlate Implementation 105
Multi-Agent UCSLSV AntAlate Simulation 106
Multi-Agent UCSLSV AntAlate Outdoor UAVs 107

Multi-Agent UCSLSV AntAlate Indoor UAVs 107

Abstract

The Pursuit Problem depicts a scenario where a target is chased by an agent, whose
movement is prescribed by some defined policy. Examples of what can be regarded as
solutions to the pursuit problem include the shape of the agent’s trajectory, whether the
agent ultimately captures the target, and the circumstances of the capture, including
the time required for capture to be achieved.

The Unicycle Model is a popular simplification used to describe the kinematics
of complex vehicular systems. An agent modeled as a unicycle has three degrees of
freedom: the location on the plane, and the orientation of the agent. The agent is
constrained to move only in the direction of the its orientation, and only two input
signals are available to control the model: steering and speed.

A Unicycle Pursuit Problem is a pursuit problem where the pursuing agent is mod-
eled as a unicycle.

This thesis describes a method used for solving unicycle pursuit problems by map-
ping the properties of the pursuit to a directed graph, which can then be regarded as
a state machine that describes the evolution of these properties in an abstract way.

The thesis details the analysis of two particular unicycle pursuit problems, to
demonstrate results that were achieved by studying the traits and structure of the
corresponding finite state machines generated by the method described here. In addi-
tion, we present a software framework used to implement a multi-agent version of one
of these unicycle pursuit problems using Unmanned Aerial Vehicles (UAVs). We call
this framework AntAlate. AntAlate allows software application developers to focus on
their algorithms by abstracting away the UAV platform, enforcing safety measures, and

providing a versatile interface for algorithm interaction.

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Abbreviations and Notations

PCBOUP
UCSLSV
DFSM
QED
UAV
MARS
ROS
R&D
MC
HLC
0SC
BMA
LLC
HTTP
TCP/IP
API
SITL

Proportional-Control Bearing-Only Unicycle Pursuit
Unicycles with Crude Sensing over a Limited Sector of Visibility
Deterministic Finite State Machine

Quod Erat Demonstrandum (what was to be shown)
Unmanned Aerial Vehicle

Multi-Agent Robotic System

Robot Operating System

Research and Development

Mission Control

High Level Control

Operator Station Client

Behavior Module Arbiter

Low Level Control

Hypertext Transfer Protocol

Transmission Control Protocol / Internet Protocol
Application Programming Interface

Software in the Loop

\

ANSTH
N

N

[
|
[
|
|
|
|
|
|
|
I
x

(a) The Unicycle Model.

v : The agent’s (and target’s) speed.

Up : The agent’s speed.

Um, The target’s speed.

o : The agent’s velocity vector.

Up : The agent’s velocity vector.

U : The target’s velocity vector.

= (z, y)T . The agent’s vector of coordinates on the plane.

0 : The agent’s orientation in the global frame of reference.
w="0 : The agent’s turning rate.

Q The angle from the agent towards its target, in the global frame of reference.
B =a—0 : The angle from the agent towards its target, in the agent’s frame.
) The distance between the agent and its target.

o . The central angle of the agent’s visibility sector.

G=(W,&) : A directed graph.

% The vertex set of G.

E The edge set of G.

to : The moment in time at which a process begins, e.g. state entry.

tn : A moment when a specific measurable or calculated event, indexed n, occurs.
ty : An unspecified moment, usually during a process, e.g. tg < t, < ti.

Tu : The mazimal dwell time of state u.

y 1
5 1
y 1 =
|
A
W=l
)
1 ’ ,/
.
Iy
Yy
ragent
[8) |
|
|
|
|
|
|
/) I
|
|
|
|
o — T 1
|
|
beacon |
T z
x

(a) Notations used in the analysis of the prob- (b) Notations used in the analysis of the prob-
lem presented in Chapter 3. lem presented in Chapter 4.

Chapter 1

Introduction

Pursuit problems are centuries old, yet still are the subject of much academic activity
[Shn98, Nah07, SG07, Shi07]. Form Pierre Bouguer, who is credited with formulating
the problem in the 18th century (as a pirate ship trying to intercept a merchantman),
to mathematicians, control theorists and roboticists today, pursuit has fascinated gen-
erations of thinkers. This might be due to the simplicity and elegance of the problem
statement, contrasted with the sophistication of the possible solutions and methods of
reaching them. This is coupled with the endless variation options in the dynamics of
the pursuing agent, its controller, its maneuverability compared to that of the target,
the sensing and computing capabilities required of the pursuing agent’s hardware, etc.
Pursuit still poses some interesting problems that the current literature has not fully
addressed. The unicycle-model variant of pursuit, for instance, has yet to be completely
solved, to the best of our knowledge. The unicycle model is a popular and useful model
for representing complex robotic and vehicular systems and their behaviors in various
tasks[DB17, TS17], but it is an underactuated system, having three degrees of freedom
(the unicycle’s orientation, and two axes of its location on the plain) and only two
actuators (forward speed and turn angle rate), which makes its control challenging.
The lack of a full analytic solution to all unicycle pursuit problems does not imply
a lack of achievements towards this goal. Medagoda and Gibbens[MG10], for instance,
propose a waypoint-following pursuit strategy wherein a virtual target moves linearly
between path waypoints at a speed depending on parameters like the pursuer-target
relative distance and the pursuer’s speed. Tracking is achieved using an LQR based con-
troller to pursue the virtual, linear agent. Following this work, Ratnoo et al. RHGS15]
present necessary conditions to achieve tracking (or tail chase) when the target is mov-
ing in a straight line. Resulting from a pure-pursuit guidance law that requires ac-
quiring both bearing and distance to the target, their control policy aligns the pursuer
with the target. Other versions of pure-pursuit and several other approaches have also
been explored to address the tracking problem[ET 16, ST10, OAE16, BBR06, DLN21,
JTWS19]. These versions of unicycle pursuit rely on sophisticated controllers, which

in turn demand additional sensing and computing capabilities for their implementa-

tion and generally, also superior maneuverability of the pursuing agent compared to
the target. Belkhouche and Belkhouche[BB04], for example, study capture conditions
when the pursuer moves at a speed higher than that of the target.

This thesis explores a novel method to solve unicycle pursuit-like problems; in Chap-
ter 3, we revisit the classic problem of pursuit when the motion of the pursuing agent
is governed by unicycle kinematics. Instead of enhancing the pursuer’s capabilities, we
consider the case of an agent restricted to have a constant speed equal to that of the
target. This hindrance has a double effect; by keeping the speed constant we underac-
tuate the pursuer even more than it inherently is, since only the steering control can be
used for the pursuit; by matching the speed to that of the target we keep the pursuer
just barely capable of tracking it even in the case where the initial conditions put the
pursuer in a good position to track the target. We further constrain our pursuing agent
to only acquire information about the bearing towards the target, and act upon this
information in a memory-less fashion; i.e. the pursuer does not remember the previous
bearing readings, and has to control its parameters based on the instantaneous reading
of the bearing only.

Our work contributes to the existing literature by guaranteeing convergence to
either tracking or capture, under conditions we analyze in detail, from arbitrary initial
conditions on the pursuer and the target using Lyapunov stability analysis[Lib03] in
Section 3.2, and then again using our method in Section 3.3. We demonstrate, using
our method, how we were able to achieve stronger results regarding the final distance
between the agent and its target than was possible using the Lyapunov analysis; and in
Section 3.4 we make predictions about which initial conditions may result in the agent
capturing the target.

Though, admittedly, following the steps in our algorithm, presented in Chapter
2, is time consuming and sometimes difficult, the algorithm grants a way to attain a
solution, arguably in a more straightforward manner than trying to guess a Lyapunov
function. In Chapter 4 we revisit the homing problem with unicycle agents with crude
sensing capabilities, and show how using our method we were able to swiftly re-solve
the problem. In Chapter 5 we go into detail about the philosophy and function of a
software framework we created, dubbed AntAlate, before concluding in future work

and final remarks.

Chapter 2

Method

The adoption of ideas from the realm of the computer sciences and applying them
to other fields, especially in the control systems discipline, is perhaps the foundation
of robotics. Describing and analyzing complex systems can be overwhelming for the
human mind, unless abstracted into generalized, qualitative, discrete, preferably linear
systems which we can better understand. Once better understood, the same abstrac-
tions could be used for the design of automated management and control systems to
govern the original, complex systems.

Examples of this notion could be found in the analysis of biological networks, as
presented by Glass[Gla75]; Chaos theory, as illustrated by Moore[Mo090]; and of-course
dynamical systems, as shown by Beer[Bee95] and Stursberg et al[SKHP97].

This chapter introduces our method of abstracting the agent-target relationship in

unicycle pursuit-type problems into an automaton.

2.1 Dynamics of Pursuit

Consider the following set of kinematic equations describing the evolution of the agent’s

state,
T cosf O
v
y | =1 sinf O [] (2.1)
. w
0 0 1

where p! = (z, y)T is the agent’s position, # is the agent’s orientation, v > 0 its speed,
and w its turning rate.

In general pursuit problems, the relationship between the agent and the target it
pursues can be described by the distance between them p, the bearing angle towards
the target as measured from the agent’s frame [, and the bearing angle towards the
agent from the target’s frame, which is equivalent to o — w, where « is the azimuth

from the agent to the target in the global frame, see for example Figure 2.2, where we

I
I

I

I

I

I

I

I

I
€T

Figure 2.1: The Unicycle Model

can also see that

f=a-—0. (2.2)
by definition.
Y
! ~
y ' N
:19 V/
1 17111
W=~)
- 1
‘0
1 ’ //
y ,,,,,,,,,,,,,,,,,,, /,, E ,,,,,,,,,,
oy 0gen
I
I
I
)
@ l
I
|
o — T :
I
beacon |
x

(a) A typical configuration of the problem an- (b) A typical configuration of the problem an-

alyzed in Chapter 3. alyzed in Chapter 4.

Figure 2.2: Examples of Unicycle Pursuit Problems and the relationship between the
target and pursuing agent expressed by (p, a, 3).

Looking at the target’s motion from a frame attached to the agent, with its real
axis pointing in the direction of the target’s velocity (or any other global, arbitrary, yet

stationary axis), we arrive at the complex representation of the position of the target

as observed by the agent

agent _ e
ptarget - pta - pe 9

where p = |pa| is the distance form target to agent. Taking the time derivative

d d ; NN) ..
P = 7 (Pem) = (p+ipa)e = <Z + W> Dta;

and comparing it with the target’s velocity as observed by the agent

<p + id) pe'® = vpe® — v,e®
p

4
p+ ipi = vt 07 — vpe"(‘gfa) = vp (Umem — ei’fj) ,
Up

leaves us with an expression for the rate of rotation

pée = vy (vm sin (—a) — sin (—5))

Up

o= 2 <sin (B) — I gin (a)) , (2.3)

f=a—0="2 (sin (B8) — 2™ sin (a)> —w. (2.5)

Now that we have expressed the dynamics of pursuit in terms of the connection
between the target and the pursuing agent, we can analyze pursuit systems by catego-

rizing this relationship into equivalence classes we call system states.

2.2 Automaton Generating Algorithm

The algorithm we use to solve Unicycle Pursuit problems (Algorithm 2.1) has two major
steps: the first is to identify the different system states, and the second is to identify
the transitions between the states and enforce a maximal dwell time for each state, i.e.

if entering state u at tp, then a transition must occur by ¢y 4+ 7, at the latest.

In order to generate the desired state machine, we start with an empty graph
G = (V,€&). We consider the equations obtained in the previous section (Equations 2.4,
2.3, and 2.5),
po= v (f}—'; cos (a) — cos (B))

a = %p sin(ﬁ)—f}—?sin(a)
g = %p sin(,@)—%—’;sin(a) - w,

describing the evolution of p, a, and [, corresponding to some defined control inputs
v and w. In the cases we analyze in the next chapters, v is held constant and w is a

function of p, «, and 5.

With these expressions for the rates of change, we can map disjoint regions in
(p, v, B) space to separate states in V), characterized by conditions on (p, &, B) For
example, in Chapter 3, state A € V is defined by the condition 0 < o < 8 < 7,
corresponding to the behavior p > 0 and & > 0. Similarly, state B € V is defined
by the condition 0 < 8 < a < 7§, corresponding to the behavior p < 0 and & < 0.
In Chapter 4, the states denoted by capital letters are defined by conditions on p, «a,
and 8 that correspond to & — 3 = %, le. =3 < B < . While the exact conditions
depend on the explicit form of the equations for (p',d, ﬁ), derived from the control
inputs defined for the specific problem at hand, the general algorithm step is to observe

these equations and deduce the characteristic conditions from them.

Once we have defined all of the system states, and populated the vertex set V, we
must find an upper bound to the dwell time for each state, to guarantee that the state
exits in finite time. This can be achieved by calculating the bounds on the defining
conditions for each state. If there are no transitions out of the state, the state is a sink,
like the capture state in Chapter 3; if the bounds evolve to an inevitable transition to
another state, such as the transition in Chapter 3 from State A to State B, then we
readily have the longest possible time until transition occurs, i.e. the maximal dwell

time.

Yet if the maximal dwell time is infinite, due for instance to an asymptotic decay
of the state’s defining condition towards its point of invalidation, such as in State C' in
Chapter 3, then we can manufacture a transition by arbitrarily choosing a convenient
dwell time, 7,, and calculate the bounds for (p(tﬁfu), a(tOJrTu),B(tOJrTu)); by doing so
we create an exit condition from the state to itself. We can later use this type of timed
self-loop to track the evolution of the bounds on p, «, and 3, in cases where it is unclear
whether the system evolves out of the state in question, as we do in the concluding
theorems of both of the following chapters.

After completing the vertex-set V and finding an expiration time for every non-sink
state in it by finding all the cases where the conditions that define the state cease
to hold, and after adding the transition to the other state to the edge-set £ for each
of these cases, along with all the manufactured self-loops, we have finally generated

a timed automaton, G (V,), that faithfully describes the evolution of the dynamical

10

system. The resulting Deterministic State Machine (DSM) can now be used to make
observations on the behavior of the dynamical system it describes.

Capitalizing on the structure of the generated automaton, we analyze the different
paths and cycles in G to find the final regions in (p, a,) space the dynamical system
reaches with time. In the next two chapters we go into detail on how we used Algorithm

2.1 to analyze two pursuit problems and reach novel results.

Algorithm 2.1 A Unicycle Pursuit Problem becomes a Deterministic Finite State
Machine
1: initialize the graph G = (V, &) = (0, 0);
2: categorize the relationship between the target and agent according to disjoint re-
gions in (p, «, 3) space.
for each resulting state v do
add u to V.
end for
for each u € V do
calculate the bounds on the defining conditions of w.
if at least one condition expires by time ty + ¢, then
the maximal 7, = t, — g is the maximal dwell time for state wu.
10: else

11: arbitrarily select a maximal dwell time 7, for state wu.

12: calculate bounds for (P(tﬁm)v QAtg474)s 5(t0+m)), and add t = tg+ 7, as an exit
condition from state u to itself.

13: end if

14: for each exit condition e from state u to state w do

15: add e to &.

16: end for

17: end for

18: return G.

11

12

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Chapter 3

Tracking and Capture in
Proportional-Control

Bearing-Only Unicycle Pursuit

This chapter shows a Lyapunov function[LaS60] we found when studying the Pro-
portional - Control Bearing - Only Unicycle Pursuit (PCBOUP) problem, formally
defined below in Section 3.1.2, which proves that o and 8 asymptotically go to zero,
ie. limi oo max {|B(t)|,|ca(t)|} = 0, ensuring that the pursuing agent ultimately gets
closer and closer to the target’s trajectory. The analysis is presented in Section 3.2,
yet bringing « and [asymptotically to zero is not enough to ensure that the target
does not slip away into infinity, and therefore does not constitute tracking, which also
requires the agent to maintain a finite final distance from the target.

However, using our method presented in Chapter 2, we were able to show that the
distance between agent and target remains bounded forever, as shown in Section 3.3.
We were also able to find a region on the plane that contains all initial conditions that

may result in the pursuing agent capturing the target, as we present in Section 3.4.

3.1 Preliminaries

Before continuing to the main results, we start by laying some foundations.

3.1.1 Pure Pursuit

The classic pure pursuit problem involves a target (a merchantman) moving in a straight

line with kinematics
pl = (0,vt), (3.1)

and a pursuing agent (a pirate ship) with kinematics

Pm _pp

= 3.2
P’pm_pp’ ()

Py

13

where p,,, p, are the target’s and agent’s locations, respectively, v is the target’s speed
and v, is the pursuing agent’s speed. The problem is to find the curve of pursuit
y(x) given p}? = (z(t),y(t)) and (x(0),y(0)) = (x0,0). Nahin dedicated a chapter in
his highly recommended book[Nah07] to the formulation, history and solution to this

classic problem.

3.1.2 Proportional-Control Bearing-Only Unicycle Pursuit

The Proportional-Control Bearing-Only Unicycle Pursuit (PCBOUP) problem involves
an agent with constant speed unicycle kinematics, able to sense only the bearing towards
the target it pursues. The agent’s steering is proportional to this measured bearing-
angle towards the target. The target’s speed is equal to that of the chasing agent while

it moves at a constant velocity.

i

Figure 3.1: The Unicycle Pursuit Problem

This setup is similar to that of the Pure Pursuit problem (Section 3.1.1), if we take
the target’s trajectory to be
P = (v1,0), (3.3)

causing a to be

tan (a) = _yvt, (3.4)

and if we replace the pursuing agent’s kinematics with Unicycle Kinematics (Equation
2.1). Since agents modeled as unicycles have an orientation, which must align with the
bearing towards the target in order to mimic pure pursuit, we assign a proportional
controller

w =K (3.5)

where & is a gain that amplifies the bearing angle 5. Consequently, the pursuing agent
applies the resulting signal w as a steering command to its single controlled actuator,

while keeping v constant.

Definition 3.1.1. the agent is facing the target when |3| < ;
Definition 3.1.2. the agent falls behind the target when |of < T;

14

Definition 3.1.3. the agent captures the target if the distance from the target is r. or
less, i.e. Jt.|p(t.) < r. with p(t) as the distance between the agent and the target;

Definition 3.1.4. the agent is said to be tracking the target if it reaches a trajectory
which is very close to that of the target while remaining within a finite range from
the target, i.e. dR, 0 < R < oo | p(t) < R, Vt, and also given arbitrary ¢ > 0,
Jt |Vt > te, |B(t)] < e and |a(t)| < e.

The physical meaning of the distance r. could be the dimension of either the target,
the agent, or any combination of both, while £ could be the acceptable measure of
observational error of the agent’s sensors.

Given the definitions above, we can now formally define the Proportional-Control
Bearing-Only Unicycle Pursuit (PCBOUP) problem.

PCBOUP Problem Statement

A target with kinematics (3.3) is pursued by an agent with kinematics (2.1), (3.5),
and a constant speed v equal to that of the target. Find k. such that if k > k., then
either the agent captures the target or tracks it, i.e. Jt.|p(t.) < 7. or IR, 0 < R <
oo | p(t) < R, Vt, and Ve > 0, Tt |Vt > t., |a(t)| < e and |B(t)] < e.

3.2 Lyapunov Function Approach

In this section we perform Lyapunov stability analysis to identify a forward invariant
region for o and 3, and ultimately prove that given x > 27”6, (a, B) = (0,0) is a stable
equilibrium point in the Lyapunov sense.

The structure of this section’s reasoning can be described as follows: Lemma 3.2.1
gives us a time frame after which the agent faces the target, and Corollary 3.1 empha-
sizes the fact that once the agent turns to face the target it always faces the target;
with lemmas 3.2.2 and 3.2.3 we prove that there is a point in time at which the agent
both falls behind and faces the target, if the agent has not captured the target by
that time; Theorem 3.2 establishes the conclusion of all these lemmas, that the system
configuration where (o, 8) € [5,—%] x [§, —%] is forward invariant; after introducing
the equilibrium configuration («, 5) = (0,0) in Lemma 3.2.4, we conclude the section
with Theorem 3.3, proving that the PCBOUP system must evolve to either capture

the target or asymptotically reach the equilibrium configuration.

Lemma 3.2.1. An agent (2.1) governed by the bearing-only control law (3.5) with
K> 2%, in pursuit of a target moving in a straight line (3.3), either captures the target

or turns to face the target in finite time, such that |3| < %.

Proof From (2.5) and (3.5),

5= % (sin(B8) — sin(a)) — kB. (3.6)

15

|sin(8) — sin(«)| < 2; therefore from (3.6),

Qg”5§5§2§—m& (3.7)
and the bounds on [are
Brt) = 2+ (Blte) — 252) e 1), .
B(t) = =272+ (B(to) +2:%) e~rlt=to); '

BT(t) < Bt) < BT ().

If § < B(to), then the upper bound on 3 decreases asymptotically to 3—;1 < 1, and

reaches § > 1 by t1,

+ — v _ v 7!{(2517150) — E
8 () =2+ (Blto) 2) e d
4
1 B(to) — 2+

3 KTe

Similarly, 37 (t) reaches —% if B(to) < —7%, and if § < [B(to)|, then 3t,, to < i <ty
when either r(t.) = r¢, or |B(t.)| < 5. u

Corollary 3.1. If an agent (2.1) governed by the bearing-only control law (3.5) with
K > 27%, in pursuit of a target moving in a straight line (3.3), faces the target, it will
continue to face the target forever.

3t | |8(t)] < :>|B(t)|§th>t*.

T
3
Proof BT and 3~ from the previous proof are global bounds on (t), even for |3| < 7.1

Notice that the higher the gain k, the closer ¢; is to tg and the lower the actual

upper bound on f is, at 3—7756

Lemma 3.2.2. If an agent (2.1) governed by the bearing-only control law (3.5) with
k> 2%

re’

in pursuit of a target moving in a straight line (3.3), falls behind the target,

it will remain behind the target forever.

3t, | Ja(t)] < g = la(t)| < g Vit > t,.

Proof If 3t, | |a(t.)| < &, then x(t.) < x(tx) = vt,, and from (3.3) and (2.1), & =
veost < v = x(t) —a(ty) <v(t—te) = a1 (t) — ze(te) = x(t) + ze(ts) < xe(t) + 2(ts);

but z(t.) < z(ts) = z(t) < x4(t) VE > ts. [

16

Lemma 3.2.3. An agent (2.1) governed by the bearing-only control law (8.5) with
K > 27%, in pursuit of a target moving in a straight line (3.3), either captures the target

or falls behind it in finite time.

Proof According to Lemma 3.2.1 and Corollary 3.1, if |3(to)| > §, then either the target
has been captured by t1, or [5(t)| < § Vt > t1; and if [B(to)| < 5, [B(t)] < § Vt > to,
and (2.4) becomes p < —vcos(B) < —3, until |a(ts)| < 5. Seeing that for the case
where |B(to)| > 5, to <t <t1, p < v,

v

5 (t—t1)

p(t) < p™ () = plto) + v (tr — to)

= p(to) + <3t t 1t>
= p\lo 021 0= 5t

By t2, the agent must therefore capture its target, unless |a| < § sometime before;
4 3 1
pT(t2) =1c = p(to) +v §t1 —to — §t2 =Tc

4

T v
3 KTc

to) — 3 to) —2--
to :t0+2m+,m (M) . (3'10)
v K
Similarly, if |3(to)| < §, p(t) < p(to) — 5 (t —to), and t2 = to + 2’)@0”&. In any case,

to) — 3 =220
t2§t0+2p<o>%+ln<m>7
v K

s v

3 KTe

and if the agent has not captured the target by %o, then

a(t)] < =

Elt*7 to <ty < to 5

Theorem 3.2. An agent (2.1) governed by the bearing-only control law (8.5) with
K > 2%, in pursuit of a target moving in a straight line (3.3), either captures the target
or reaches a forward invariant configuration region (o, B) € [g, —g] X [%, —%} in finite

time.
Proof Results directly from all previous statements. |

Lemma 3.2.4. If an agent (2.1) governed by the bearing-only control law (3.5), in
pursuit of a target moving in a straight line (3.3), reaches the target’s path with f =0,
then it tracks the target from that point on.

Proof 1f (o,) = (0,0), then by (2.3), (2.4) and (3.6), (d,B,p) =(0,0,0), and («, 3, p)

become constant. [|

17

Theorem 3.3. An agent (2.1) governed by the bearing-only control law (5.5) with
K > 27%, in pursuit of a target moving in a straight line (3.3), either captures the target

or asymptotically reaches the target’s path.

Proof Consider the function

Vi(a,p) =2 (sin2 (aét)) + sin? (ﬁ;t))) > 0.

V =sin (a) & + sin (3) S

_ % (sin? (8) — sin? ()) — kBsin (B)

< (Z - /@) Bsin (B) — %sin2 ().

If the agent captures the target, then 3t. < oo | p(t.) < r¢, and the pursuit concludes;

otherwise, p(t) > r., and since we choose the gain such that x > 2.,

V< (U — QU) Bsin (B) — %sin2 (o) <0.

Te Te
We proceed to find the points in which V' = 0.
V=0= % (sin? (8) - sin® () — KBsin (8) =0
4
sin? (a) = Bsin (B) (

sin () ﬁp)
B v)

From Theorem 3.2, if the target was not captured by to, then Vt > o, (a(t),3(t)) €

[g,—g] x [5,—%]. Using this fact, we notice that %2 > 2, and that if |5(t)| < Z,

then # < 1, Bsin(B) > 0, and the right hand side of the last equation becomes

non-positive, while the left hand side non-negative, and the only point in the forward

invariant region (a,) € [5,—%] x [, —%] at which V = 0 is the origin (0,0). To

conclude the proof,

L.Vt > to, (a(t),B(t)) € [

ol
|
vl
X
wx
|
Wy

2. Vi(e,) >0,V (o, 8) € [3, =53] x [5,—5] \ (0,0),

3. V(a,B) <0,V (a,f) €|

ol
\
R
X
ol
\
el
i)
/
—
vO
(an)
N—

4. V(0,0) = V (0,0) = 0;

V is therefore a Lyapunov function[LaS60], and if the target was not captured in the
process, then lim;_, (o, 8) = (0,0). |

18

3.3 Tracking

Though Theorem 3.3 asserts that p (t — oo) = 0, it does not necessarily guarantee that
p(t = 00) < co. If the rate at which |5| and || shrink is too low, the target may slip

away to infinity.

This section addresses this issue and affirms that even if the target does not get
captured, it does not get away. We achieve this result by applying Algorithm 2.1 to

generate a deterministic finite state machine.

The first major stage in Algorithm 2.1 involves identifying the different system
states. Figure 3.2 illustrates the defining condition of each state, while Figure 3.3
shows a typical configuration for each of the primary system states, and Table 3.1

summarizes the state and condition pairs.

P 2 (sin (8) = sin (o)) — kB

L (sin (B) — sin (@)

sin (8) — sin (a) sin (3) — sin (a)

: 2 (sin (8) — sin (o)) — K3
2 (sin (8) — sin (a)) B hn SET N 7-(-f‘:(--)--lm()

cos (o) — cos (B)

(b) State B.

cos (a) — cos (B)
—

2 (sin (B) — sin (@)

2 (sin (B) — sin (@)

sin (8) — sin ()

sin (3) — sin (@)

i, ¥ (sin (8) — sin (a) — kB

............................

h 2 (sin () — sin () — K53
H H

(c) State C. (d) State D.

Figure 3.2: The primary states, defined by the angle couple «, 3, and their rate of
change.

19

8 N
\

(c) State C. (d) State D.

Figure 3.3: An illustration of a typical configuration on the plane for each system state.

The second major stage of Algorithm 2.1 is identifying the transitions from state
to state by calculating the bounds on (p, o, 8) upon exit. To this end we present the

following series of lemmas.

Lemma 3.3.1 (States F, E~ Exit Condition). Ifx > 3r , and p(to) > re, then |5(t)| <
z Vt‘t>t +1m <(t°)22)

2 KTe

Proof Using the same bounds on 3 from Equation 3.8, if § < |3(to)| < 7, then the
magnitude of the bounds on § shrink asymptotically to 2%% < 3, and reach § by 1,

v) e—n(tlfto) —
KT
\

tl—to—i-*l (p)
2 m"c

Since the bounds on 8 are global, if [B(to)| < 2;7- < 7, then so must [5(t1)| < 5. W

B (1)) = 2—

RT¢e

+ (5@0) -2

|3

Lemma 3.3.2 (State A Exit Condition). If & > =, and at time t = to,
1. 0 < afty) < Bto) < %
2. p(tog) > re;

then

20

State | System Configuration
A 0<a(t)<pB(t) <3
A~ -5 < B(t) <a(t) <0
B 0<B(t) <alt) <3
B~ -5 <a(t) <B(t) <0
C 0<-B<a<i
c- 0<B(t) < —aft) < §
D 0<a<-B8<73
D~ 0< —a(t) <B(t)< 5§
E 5<B<m

E- —T<B< -5

Table 3.1: Path-Following States of Proportional-Control Unicycles with Bearing-Only
Sensing in Pursuit of a Constant Velocity Target.

— 1 2
1. tl—t0+ﬁln<%x();>,
0

2. BH(h) = B(to)e_(”_m’)(tl_m) — s sin (alto)) (1 - e‘(“‘w)(“‘“’)),

3. at(t1) = B(ty)+2arccot ((cot (M) — tan (ﬁ(to))>

4. pT(t1) = p(to) + £ 1n (wao)
B(to)

) (cos(a(to)) — cos(B(to))),

21

v _

o7 SOG4 o (3(10))),

5. a~(t1) = alty) + i I <1+ 2(t0)> (sin (M) — sin (a+(t1))),

B(to)

t to)
6. to =to+ prz(to) In (Bto)+ a0 = I sin a(0))

to)—v (t1)+np e sin(a(

and 3ty [t1 < t. <t such that a(t.) = B(t.) < BT (t1).

B(to)

BH(t) p------mmm oo ;

B(to)+a(to)
2

|

07@12 ”””””” 7
a t L L

(to) » A

Figure 3.4: Lemma 3.3.2 proof outline. We start by finding ST and 37, the bounds
of B, and use 8~ to calculate t; and ST (¢1). We then find ', an upper bound on a,
and a™(t1). We continue to find the upper bound on p(t1), and with it we calculate
a~ (t1), the minimal possible value for o at time ¢;. We conclude by finding time ¢,
when 3% (t3) = a~ (1), and note that 3 = o must happen between ¢; and to.

Figure 3.4 shows an outline of the proof.

Proof While in state A, sin () > sin () and cos(a) > cos(), therefore

v

a = p (sin (8) —sin (a)) > 0,

p = v (cos(a) — cos(B)) > 0,
and a and p grow accordingly.

v

Meanwhile, since p(tg) > 7¢, p > 0, and x > ;’—c > Sl

B=— (sin(8) —sin(@) —#B < 7

v v v kp (to) —v
o) sin (o) + <p o) — m) B < _,O(to) sin (a(tg)) — <p(to)) B <0.

So we see that while in state A, o grows and [shrinks.

(sin (8) — sin (a)) — xB

<_

kB < f<— sin(a(to))—(ﬁ— -)5

p(to) p (to)

4

22

B(t) > B~ (t) = B(t)e "(=10);

O]

50 < 50 = ey At (1- e(“ﬁw)“’) |

Since a(tg) > 0 and k > ﬁ, BT decays to a negative value.

Let ¢1 such that

)efn(tlfto) _ ﬁ(to) + a(to)

B7(1) = Bl :

and B (t1) =:<ﬁ“to)+-ﬁféé3shl(a(hﬁ)> e(npéw)(htO)—-H”&é?sh1@1@0))

p(to)

We now find an upper bound on «,

(sin (B(tg)) — sin (@) ;

sin(a) = 2sin ((;) cos <a> — '2 sin (§) cos

N[—~

v 2tan (5)
p)

_ 2du
C1+u?

4

doﬁ_ 2 d7u
dt 1+ u2dt

4

23

T = o (s (30)) -)

1+u2dt p(to) 1+ u?
U
2 du _ vsin (B(t)) v ~ smiitmy T L
1+u?dt p(to) 1+ u?
. o —2u 4 1 _ 1 +1
_ vsin (5(to)) sin(B(fo)) " sin?(B(to) _ sin®(B(t0)
p(to) 1+ u?
U
: (u- ;)2 1o 1
2 du _ wvsin(B(to)) sin(B(to)) sin?(3(t0))
1+u?dt p(to) 1+ u?
U
/ du B / vsin ((to)) ,,
(u- ;)2 IR 2p(to)
sin(B(t0)) sin?(B(to))
U

du _ [wsin(B(to))
/ (- sch Tt

2
u-— r(ﬂ(to))) — cot”
N8

tan (B(to)) (/ du / du)
? (v~ sdy) — ot (B(t0) 7/ (w— sgdy) + cot (B(t0)

g
U
=)
U
/ u_cof?ﬂgw) - u_taju(ﬂgm) = | Sy B0
U
In (u — cot <”B(;O)>> —In (u — tan <ﬁ(;0))> — p(:o) cos (B(to)) (t — to) + Co
4

u — cot (ﬁ(;°)> v
In () = i) (B(to)) (t —to) + Co

4

24

tan (%) — cot (5(50)) -
In (tan (%) _tan(ﬁ(;o)) = o) (B(t)) (t —to) + Co

’ = " _cos (B(t)) (t — to) + Co
sin (2000) cos (o p(to)
()

p(to)

a+726(t0)> sin (B(to)) cot <I8(;0))

(8
): U cos (B(to)) (t — to) + Cy
I

cos (%) cos (B(tp)) — sin

s (=)

at —
— (sin (B(to)) — cot <2W°)> cos (B(to))> cot <5 (;0))

_ Oy ertior cos(Blto)) t—to)

%
+ _ v
cot (a 25(150)) = tan (B(to)) + Caerlio) cos(B(to)) (t—to)
i3

at(t) = B(to) + 2arccot (Cge#tﬂ cos(Blto))(t=t0) | o (ﬂ(%))) ;
a+(t0) = Oé(t(])

4

a(to) — B(to)

C’gzcot(5

) - tan (8(t0)

a’(t) = B(to)

+2 arccot ((cot (W) — tan (B(to))> ey CS(Blo)(t=to) | o (B(to))))

25

For toStStl,

p = v (cos(a) — cos(B)) < v (cos(alto)) — cos(B(tn))

4

p(t1) < p(to) + v (cos(a(to)) — cos(B(to))) (f1 — to)

alio)
1+ 30

From these results we can find a lower bound on «(t), for all ty < t < ¢y,

plto) + = In () (cos(alto)) — cos(B(t0))) = p* (t1).

“Z) (sin (57 (1)) = sin (o™ (1))
¥
ﬁ (sin (8= (1)) —sin (a™ (1))) (11 — to)

Let t2 be the moment at which 87 (t2) = a™(t1),

Ct(tl) > 047<t1) = Oz(to) +

a (t1) = —LO)U sin (a(tg)) + (5(750) + o(to) sin (a(to))> o (nfﬁo))(tg—to)

T b0

1 — v

t2 = to + P In pE}tO)
R blto) a=(t1) + f(t‘()ﬁ - sin (a(to))

p(to

and Jt,, t; <t < to, such that S(t,) = a(ts).

Corollary 3.4 (State A~ Exit Condition). If > ;Z, and at time t = to,

1. —g < 5(250) < Oé(to) <0,

2. p(to) > re;
then
1. t1 = to + 1 In 3 5
" 1+ﬁ88§

2. BH(t1) = Blto)e (st) a0 _ s sin (a(to) (1 _ 6(“»@)“”“),

3. at(t1) = B(to)
+2 arccot ((COt (M) — tan (ﬁ(to))) e Plt0) cos(B(to))(t1—to) 4 tan (6(750))>;

4. p*(t) = plto) + 3 1n <3<t0)> (cos(a(to)) — cos(B(to))),

1+B(to)

26

5. a~(t) = a(to) + Gy In <1+§Et°§> (sin (2ie2y20)) — sin (a* (1)),
to

6. to =to + plto) In <

,B(to)—&-#o)iv sin(a(to))
kp(to)—v ’

o () F iy = sin(alto))
and 3ty [t1 < t, <ty such that a(ty) = B(ts) > BT (t1).
Lemma 3.3.3 (State B Exit Conditions). If at time t = tg
1. 0 < B(to) < afto) < 3,
2. p(to) > 7e;
then

1. p~(to+) = p(to) — 2 (1 — cos (a(to))),

2. a= ’fp—(to+%) T p(to) r— gy (T—cos(a(to))) ’
B(to)+a sin(a(tp))—sin B(tg)
5y 20l (2)

L(zo) +a (sin(a(tg))fsin<5(zo))) ’

4. ta =to+ L1In(b),

5. a”(t2) = alte) + (L +b) Blte) + a (sin (alty)) — sin (2L2)) (1= b~ (b)),

e

6. B+(t2) = 252,

+ —(to)— BT
o b1 e cos(a(t0)+2[3 (tz))sin(a (t2)-8 (t2>)
L t3=ty— -In - B :
"\) B cos (2027) sin (22l))

and either 3t |ta < t. < ts such that B(ts) = 0, or Ity |tg < t« < t3 such that p(ty) < re.

Figure 3.5 shows an outline of the proof.

Proof While in state B, 0 < 8(t) < a(t) < 7, and

&= p (sin (8) —sin (a)) <0,

B=da—kKB<a<O,

therefore 5 shrinks faster than «. Also,
p = v (cos(a) —cos(8)) <0,
shrinking p.

27

Figure 3.5: Lemma 3.3.3 proof outline. We start by finding an upper bound for 5 and
using it to calculate ¢;. We then use t; to find p~(¢1), which is needed in order to find
the lower bound on 3. We then proceed to calculate to, and find the lower bound on
a(tz). We conclude the proof by showing that the upper bound on 5 must reach 0 by
t3, and that therefore S = 0 must have happened between ¢ and t3.

We will now find 1, t2, the upper and lower bounds respectively to the time required
4 3 — Blto)
until § = =2 .
B <—kB

4

B(t) < B(to)e "710) = gT(1).

Let t1 be the moment at which the upper bound on (reaches @,

B+ (1) = Bltg)e—rtn—to) — B0)

(&
4
1
t1 =1ty + —.
K

B(to

e

N

So % is the longest possible period of time required for g <

While in state B,
p = v (cos (a) — cos(B)) > v (cos (a(ty)) — 1),
and the lower bound on p is
p~(t) = p(to) + v (cos (alto)) — 1) (t —to) < p(2).
Using p~ (t) < p(t) Vt|to < t < t1, the lower bound to the minimal possible value for p

28

at t; becomes
P (1) = plto) + v (c0s (alto)) — 1) (b1 — to) = plto) — - (1 — cos alto))).

We can now calculate the lower bound on 3(t) Vi [tg < t < t1,

p_q()tl) (sin (5(20)) — sin (a(to))) — k3

¥
v sin(a(tp)) —sin (5(20))
p(to) K = S5y (1 = cos (a(to)))

v sin(a(te)) — sin (242) et
p(to) K — iy (1 —cos (a(to)))

B>

+

B>p(t) =—

and find ¢o, the first possible moment at which § = B (20).

v (sin (a(tp)) — sin (6(20)))
oty (1 = cos (a(to)))

i (5@0) + p(go) sin (a(to)) — sin (6(20)))) o—lta—to) _ M

K = 5y (1= cos (a(to))) c
\
sin(a(to))— sm<6)
to =1tg + l In ﬁ(tO) + P(0) K p(t0>(1 COS(a(to)
to)
" B(to) y sin(a(to))—sin)
e p(to) K p<t0) (1- cos(a D))

During this time, tg < t < tg, § shrunk faster than o and the two angles drifted

away from one another.

d . _
dt(a_ﬁ):a_ﬁz’%ﬂa
KBT(t) < KB < KBT(E) = KB(tg)e " (710)

and we can now calculate the lower bound on «(t2) — 5(t2),

ﬁ <Sin (Oé(t[))) —sin <@)) —k(t—to —k(t—to
a(t2)—B(t2) > alto)+— 1 cos (o) (1= (8 = t0) = 7)) B(tg)e 1)

I
a(ta) > a(ty) + B(t2)

o) (Sin< (t)) — sin (22

(>)) ~k(ta—to) —(t2—to)
1—k(tag—tg) —e 270)) — B(tg)e 2—1o
R P(to) (1 = cos (a(to))) (()) (to)
sin(a(to))_sin</3(to)
1 3 B(t()) v e
(to)48(t2) Sy (sin (alto)) — sin (2L))) ol L DL
K — ,,{;0) (1 —cos ((to))) , sin(a(to))—sin(ﬁ“))

5(150) + plto) 7 p(fo)(l cos(a(to)))

; o[B(tg)
) ' ' B(to) . Sln(a(to))—bln()
(p(to) (sm (O[(to)) — sin (ﬁ(to))) . ﬂ(t)) 60 + plto) Fim p(to)(l cos(alto)))
- 0

B(tg)

sin(a(to))—sin (

ﬁ(to) + p(go) — o)(1 cos(a(to)))

and .
a(ty) > alte) + 5(60)
sin(a(to))— sin(ﬁ(t(])
v o Bto) Blto) | °
o) (Sln((to)) —Sln()) e T plto) i (Tcos(alto)))
+ 1+1In :

K — 5 to) (]. — COS (a(to))) " sin(a(to))— sm(’a(to)
,B(to) + p(to) K— P(to) (1—cos(a(to)))

sin(a(to))fsin<5(t0)>
v . . B(to) v ¢
N (Sm((to)) — sin (6(20))) 4 B(t) e T oto) iy (Tcos(a(to)))
K — ot (1= cos (a(to))) 0)

sin(a(to))—sin

B(to) + S0y rm=r=(T=cos(atio)))

p(to)

After t9, and since o — 3 grows while o and § independently shrink in state B, we

can calculate new upper bounds.

b= _% (sin () — sin (8)) = —2%%5 (agﬁ) sin (0‘ ; B>

< =2 v) cos (a(to) i B+(t2)> sin <0f(t2) — 6+(t2)> < 05

2 2

30

: Vo (04(750) + ﬂ+(t2)> “in <04(t2) — B (t2)

B:d_ﬂﬁ<—2p(t0) 5 5 >—/{B<O,

and Vit > to,

a(t) <a®(t) = al(ty) — 2v cos (OWM> sin (a(tQ) — B+(t2>) (t—t2);

kp(to) 2 2

B(t) < B3 (t) =

_ 2o <a<t0> + 6*@2)) “n <a—<t2> = 5+<t2>)
kp(to) 2 2

N <5+(t2) N 2v) cos (Oz(to) + B+(t2)> sin (oz_(tz) - B+(t2)>> e rli=t2)

kp(to 2 2

and now we can find the time ¢3, when S5 (t3) = 0.

By (t3) = 20 cos (a(to) * B+(t2)> sin (O‘_(tZ) - ﬁ+(t2)>

 kp(to) 2 2

. <5+(t2) N (a(to) gﬁ+(t2)> - (Oz_(tz) ; ﬁ+(t2)>> rlts—t2) _

4

20 « +ﬂ . e} —,B
l (P (tO) COS ((tO) (tQ)) sin (4@2)2 (tQ)) >

& BH(ta) + HPQ&O) cos (a(t°)+25+(t2)) sin (M)

To conclude, since 0 < 3 < ,B;’ while in state B and past ¢35, and since B; (ts) =0,
then 3t |ty <t < t3 such that 5(t) = 0. By t3, the lowest possible value for p(t) is

p~(t3) = p(to) — v (1 — cos(a(to))) (t3 — to) ;
concluding the proof. []

Corollary 3.5 (State B~ Exit Conditions). If at time t = t
1. =5 < a(to) < B(to) <0,

2. p(to) > re;

1. p~(to+ 1) = p(to) — 2 (1 — cos (a(to))),

2. a — pr(to—O—%) - p(t()) n—#o)(l_cos(a(to))),
B(to)+a| sin(a(tp))—sin %0)
g = Lo &)

L(zo) +a (sin(a(tg))fsin<5(zo))) ’

4. ta :to—{—%ln(b),

31

5.0~ (t2) = a(to) + (L +b) Blto) + a (sin (a(to)) — sin (2U22)) (1= b—In (b)),

e

6. BT(ts) = /B(ZO)’

+ — At
7 ot 1] =y cos<a<to)+2ﬁ (t2)>sin(a (t2)—5 <t2>)
- 27w a(tg)+6+ - (a—(ty)—pB+)
B (t2)+ s cos((to)+5 (t2))51n< (t2) 8 (tz))

and either t, [ta < t. < t3 such that B(ts) = 0, or It |tg < t« < t3 such that p(ty) < re.

Lemma 3.3.4 (State C' Exit Conditions). Ifx > 2>, and at timet = to, 0 < —B(to) <
a(ty) < 5 , then

1.t = to+ P(zo) n (tan(@))) ,

tan(v alig)—Blig)

KTe

tan(ia(;m)

= Te

2. t2 — tO + 20 ln tan(LO‘@O)*B(tO)))
KTe 2

a(tg)
3. t3=1to+ e ln <_:zgﬁzo)g) :

and either

1. 0 < —5(t1) < a(tl) < HLTC (Oé(to) — ,B(t())), or

2. Jts, to <t < t1| =B(t) = alty), and if B(to) < = alto), then 0 < a(ty) <
2 (a(to) - Blto)) or

3. Ty, t3 < tu <t1| —P(ts) = a(ts), and if B(ty) > —%—a(ty), then

V—KT¢

tan 04(;0)
v a2
0 < aft.) < - (alts) ~ Blt)~(B(to) + - (alte) - Blt0))) :

KTe KTe

or

4. Jty, to <t <t ’ p(t*) <rec.

Figure 3.6 shows an outline of the proof.

Proof While in state C, 0 < -8 < a < 7, and

p = v (cos(a) — cos(B)) <0,

Oé—ﬂz’%ﬁgoa

&= p (sin(B) — sin(a)) < - sin(a) <)

sin(«) < 0,

32

B(to)

(a) If B(to) > == (B(to) — a(to)) and exiting the state with a(t.) = —B(t.),
then tp <t, <t and a(t.) < =2 (a(to) — B(to))

(l(t())
—B(to)
7o (alto) — B(to))

B(to)

(b) If B(to) < =% (B(to) — a(to)) and exiting the state with a(t.) = —8(¢.),

KRTe

then ¢35 < t, <t; and a(t.) < —p~ (¢3)

Figure 3.6: Lemma 3.3.4 proof outline. We find lower and upper bounds on « and 3,
and use the bounds on « to calculate t1, t2, and t3. By 1, either the system re-enters
state C or exits the state with a = —f, or p = r..

In other words, p, @ and o — 8 are positive and shrinking.

sin(a) = 2sin (g) cos <O‘> _ 2sin (§) cos (‘22

_ 2tan (9)
2 sin? (§) + cos? 2

)
2) 1+tan? (%)

Substituting u = tan (),

@_ 1+ u?
do 2
(2
dov — 2du
1+ u2

i3

da 2 du

dt - 1+u2dt
i3
2 d7u c_ v 2u
1+wu?dt p(to) 1+ u?
i3
/du <Y /dt
u p(to)
i3
In(u) < C) — —— (t — to)
I
tan () < tan (a(QtO)) e p(to)(t_to)
N2

__v

a(t) < at(t) = 2arctan (tan (O‘(;()))) (tto>> ‘

Now that we found the upper bound on «, we can find the last possible moment in

time when
alt) = - (alto) = lto).
o (t1) = - (alto) ~ B(t0))
J
2arctan (tan alto) B (a(to) — B(to))
2 RT¢
y
a(to)
by Pl an (%
1="0 v tan (H%Ca(to)gﬁ(to))

We continue and calculate a lower bound on «,

a = p (sin(B) — sin(«)) > —2— sin(«)

Te

\’
a(t) > a~ (t) = 2arctan <tan <0z(;§0)) efl’(t%)) 7

and the bounds on £,

B= %(sin(ﬂ) —sin(a)) — kB < —kf

34

and
IS % (sin(B) — sin(a)) — kB = —2— (cos (M> (;8)> — kB
\
5> 2% sin (Oé(to) - 5(150)) —wp > —2Y (04(?50) - ﬁ(t0)> B
- Te 2 Te 2
!
5(8) 2 57(0) =~ (alto) — B(t0) + (Blta) + - (alto) = (1))) €™

Next, we calculate time to, when

o (12) = - (alto) = B(t0))
\
2 arctan (tan (a(;())) e_?"z(ﬂ_to)) = Hq’l)”c (a(to) — B(to))
\

tan (2
2=t ;;vl (tan(v Et(tf)zg(to))> ’

a” (t3) = —B(to)

and t3, when

4
2 arctan (tan (a(;f@) e_?"ch(t?’_to)) = —B(to)
¥
tan (@)
an{ 2~

If B(to) < y=-alto), then Vt, [to <t <to,itis guaranteed that —3(t) < -
a(t), and therefore if 3t. | a(ts) = B(ts), then a(ts) < - (a(to) — B(to)). Similarly,
if B(to) > ;=5 (to), then Vt, —B7(t) < 0 and therefore if 3t, | a(t,) = B(t,), then

35

(a(to) — B(to)) <

tan 0(;0)
ﬁwm=—<mm—mmw(mm+<mm—mm0e :
concluding the proof. |

Corollary 3.6 (State C~ Exit Conditions). If k > 2;%, and at time t = tg, 0 <
B(to) < —a(te) < 5 , then

tanM
Z.tlzto-f—p(zo)ln(<2>),

tan(% a(to)j(to))

KTc

KTe

tan [2¢a)
3. t3=to+Ln <_t:nE‘Z°’g) :

, tan(L(éO))
2. t2 = t() + 50 In tan(Lo‘(tD);B(tO)))

@

and either

1. RLTC (a(to) — ﬂ(to)) < Oé(tl) < —ﬁ(tl) <0, or

2. Jts, to <t <ti| —B(t) = alts), and if B(to) > ;=-a(to), then - (a(to) — B(to)) <
aty) <0 or

3. Jte, 13 <t <tr| =B(ts) = alts), and if B(to) < ;=5-alto), then

v—

tan(a(;0)>
R R Y
v v tan(ﬁ(to))

(alt) - B(to))~ (Blto) +

RTc

or
4. Fy, to <t < b1 | p(ts) < e
Lemma 3.3.5 (State D Exit Conditions). If k > 27% and at time t = tg,
1. 0 < a(to) < —B(to) < 3,

2. p(to) > re;

then

1.ty = to + 2] (tanga%w - 1) ;

2.t =t0+%ln(B(tO));

"~ a(to)

36

— p(to) a(to) .
3. t3=tg+ 5% 1n (1 - sin(B(oto))) ’
4. p(t) > p(to) Vit ‘to <t<t.

and either

1. 0<aty) < a(éo) and

((tg) (HtanQ <a(‘i0))
[Pl0) _) N\ 7/
K 2

v 1_tan2<a(to)>> _ _B(to); o

2. 3t |ta <t <t1 such that 0 < —f(ts) < alts) < alty); or

]

0 < a(ty) < —p(t1) < —B(to)e

o) o) (1 _2alo)
e) n(sm(ﬁ(to))) < B(t*) < Oz(t*) =0.

8. Tt |ts < t, <t such that B(to)e_(v

V

B(to)

Figure 3.7: Lemma 3.3.5 proof outline. After finding an upper bound on p, we use this
upper bound to find an upper bound for a and the moment ¢; where the upper bound
reaches @ Then, we find the bounds on 3, and show that both grow monotonously.
Since |B| shrinks with time, we can find the lower bound on «, and show that unless

leaving the state with o > —f or a = 0, the angles «, § continue to shrink.

Figure 3.7 shows an outline of the proof.

Proof While in state D, 0 < a < —f3 < 7, and therefore

p = v (cos(a) —cos(B)) > 0,

Q= % (sin(pB) — sin(a)) <0,
ad—pB=rB<0,

37

and « shrinks as p grows, and the difference between « and shrinks as well. Since

—5 <pB < —aand 0 < «a, we can find an upper bound on p,
p=v(cos(a) —cos(B)) <v(1—-0)=w

\
p(t) < pT(t) = plto) +v (t —to)
We can now find an upper bound for «,

&= () meinle)) < Sy (mB) —sin(@) < =G = w)

sin(a)

4

a S o) ot —to) sin()

4

/ sircf?a) = _/ (o) +Z(t “igy

Substituting w = p(te) + v (t — to), % = v, and

_ / v g —_ [rdw
p(to) +v(t—ty) w v
N8
a dw
In (tan <2>> < —/7 — Ch —1In (plto) + v (t — to))
w
N8
o (Co) ((n(plto)+v(t—t)))+ _
tan(2><e°<e 0 0) =

4

a(t) < a+(t) = 2arctan (,o(to) + o (75 — to)

Let 1 such that a(t) < a(§0)7

2

M_Of’_ = arctan
= o (h) = Zarct (p(to>+v<t1—to>

p(to) tan (@))

We can bound S(t),
B == (sin(8) —sin(a)) — kB < kB

p
y
B(t) < BH(t) = Bltg)e " =10),

and since p(tg) is the lower bound on p,

s U . . . 2v
8= ; (sin(p) — sin(«a)) — kKB > (sin(B) — sin(—p)) — kB > (— /43) 5.

p(to)

4

2v n) (t—to)‘

B(t) =B (t) = B(to)e(”“‘”_ (3.11)

We can now find t2, a moment before the first opportunity for —f8 < a,
alto) = =B (t2) = —B(to)e (27"

4

1
t2:t0+ln<—
K

5(750)) _

a(to)

If K > 2.2 and p(to) > re, then p(to) > 2v " and it is guaranteed that |3(¢)| shrinks with

time; in particular,

14tan2 [2C0) 1ttan? [2t0)
B (H@_2> (1J_r:an2 Ea:o)%) _R@ (1j;n2 gﬂso)g)
B(to)e)< B(t) < Blto)e i

and therefore

|B(to)| > B(t1)] -
Since B(t) > B(to) Yt > to,

a(t) > a (t) = sin(B(to)) + (a(to) — sin(B(to))) e 7t 1),

and the first opportunity for o = 0 must come after time t3,
0 = sin(5(to)) + (a(to) — sin(B(to))) e_ﬁo)(m—to)

4

39

at which time

5> 5 (ts) = Blta)el P) _ e (<42 (1),

)

concluding the proof. |
Corollary 3.7 (State D~ Exit Conditions). If k > 2;> and at time t = to,

1. 0 < —a(to) < B(to) < 7,

2. p(to) > re;

then
altg)
1.t = to + 2ol (::Eai)g - 1) ;

2. ty :to—i—%ln (—gggg),

3.ty =to+ 20 In (1 oo

4. p(t) > plto) Vi |to <t <t;.

and either

1. 0 < —a(ty) < _a(;o) and

0< —Oé(tl) < /B(tl) < B(to)e

2. 3t |ta <t <t1 such that 0 < B(ty) < —a(ty) < —af(to); or

(20 9 1n(1——2ta) _
3. 3ty |ts < t. < t1 such that 0 = a(t,) < B(t.) < B(to)e (” v) n(S“‘WO”).

After analyzing all the exit conditions for all states, we can update Table 3.1 to
create a new transition table, see Table 3.2.

Noticing that states B,C, B~, and C~ can lead to capture, we make another obser-
vation, that there is a limit to how long the agent can fall behind the target and still

be able to capture it.
Lemma 3.3.6. a(ty) =0, p(tg) > rc = p(t) > r. Vit > 1.

Proof The target and pursuer agent have the same speed. If the agent is on the target’s
path (o = 0), then the shortest path towards the target is on the target’s straight path,
therefore the best the agent can do in terms of pursuing the target is to stay on the
straight path, resulting in a constant p and never capturing the target. Any other
course of action taken by the agent will increase p, and again result in never capturing
the target. |

40

Figure 3.8: The Pursuit graph G is a DFSM.

As a conclusion form the previous lemma, if there is a transition from D or D~ to
A~ or A, then a future capture is impossible. To adjust for this fact, we doubled the
transition table from Table 3.2 such that F and E~ transition to prime states, marked
by subscript 1, and the new D; or D; transition to A~ or A. Figure 3.8 shows the
result of this doubling.

41

H State \ System Configuration \ Exit Condition ‘ Transition H
HA ‘ Oﬁa(t)<ﬁ(t)<§ ‘ a=p ‘B H
s pP=Te Capture
B 0<B(t)<alt)<T = ¢
tan allg)
t = to+ 2l 1 (, g(;)zw) C
C 0<—-fB<a<i tan(ﬁf)
pP=Tec Capture
a=p D
a(tg)
t =g+ 2ol (ta“()) _ 1) D
v a(t
D 0<a<—-p<3 tan((40))
—B <« C
a=20 A~
[A~ [-5<BH)<al)<0] a=5 5 I
B~ -5 <at)<pt) <0 %:_TC gﬁpwre
an altg)
t:t0+p(t0)ln(t (20)) .
- T v tan [- @to)=A(to)
C 0<B(t) < —alt) < T (7 storzstal)
pP=Tc Capture
a=p D~
< —a Cc-
-D_ O<_ t) < t<z an a(tg)
O[()—B() 2 t_t+p(to) t (20 . D_
v tan(a(to))
4
o= A
0<a() <A <3 7
0<B(t) <a(t) <3 B
T 0<—fB<a<i C
- F<laf<m C<a< gt -
Ea E or 2 _
T < |Bl<n —5 <B() <aft) <0 A
T —E<a(®) <A <0 B
0<B(t) < —alt) <3 c~
0<—a(t) <B(t) <3 D~

Table 3.2: Transition Table for the PCBOUP problem.

Theorem 3.8 (Tracking). If
1. 4(t) = max {la(t)], 13O},
2. k> 2%, and
3. p(to) > re,

then either

1. 3T >0 | p(T) <r¢, or

42

2.3dR,0<R<oo |p(t) <R, VYt andVe |0<e<Z,IT>0|T <t=~(t) <e.

In other words, a unicycle agent (Equation 2.1) in pursuit of a target moving in a
straight line (Equation 3.3) with the bearing-only control law (Equation 3.5) governing
its steering, either captures the target or asymptotically reaches the target’s path, and
the distance between the target and agent is bound from above by a finite value.

Figure 3.8 shows G, the resulting DFSM of the discussion so far. Each state has
a time limit that results in exiting the state when the time limit expires. The bold
edges represent transitions that entail a diminishing of v before exiting the state. Since
no loop on the graph is possible without traversing a bold edge, Then v must shrink
every loop. Summing the time upper bounds for each state traversed until the eventual
~v < € results in T. The maximal added distance from states A, D, and their prime and

symmetrical counterparts, accumulates to a finite value less than some finite R.

Proof Except for the capture state at which the pursuit is concluded, each of the system
states has a finite time limit, and the state must transition when the limit lapses, even
if re-entering the same state. Any initial condition other than 0 < |a| < 5,0 < |f] < §
falls into one of the prime states (the inner states with the subscript 1) in G (Figure 3.8)
in finite time, resulting in either capture, remaining in a loop between states C1, Dy or
their symmetrical states C] , D, or an eventual exit towards the outer states with the
transition into state A or A~ with a = 0.

Entering State A with p = pg, @ = 0 and § = §y results in an exit with + smaller
than 87 (t1),

YA < BT (0) = ﬁoe_ (H_%)(tl_m) - sin (0) <1 —e ('{_Put)>(t1—to)>

X
PO

_ 5067<57%)(t17t0) _ 506_(”_,}6> <t0+iln(1+zﬁoo>—t0> _ L

ya < 2770 % (3.12)

and the state transitions to B with o = 5 < 4.
Exiting state B, « is less than v4, and p < p™*(t2), see Figure 3.9.

pt(te) = pa+v (cos (a™(t2)) — cos (ﬁJr(tg))) (to — to)

and the state transitions to state C' with @ = vy < v4 and g = 0. Figure 3.10
shows the evolution of o and 3 after entering state C from state B.
Any consecutive loop between state C' and itself follows the schema presented in

Figure 3.6. Given x > 2%, each iteration shrinks ~, the greater the x the greater the

43

. —

Bto) | - _______>

ta 1 t3

Figure 3.9: State B. Similar to Figure 3.5, the initial condition ag = By = y4 from the
transition from state A results in exiting state B with v5 < y4.

Figure 3.10: State C' after state B. Similar to Figure 3.6, with the initial conditions
ag = vp and By = 0. By t1, a transition must have happened, either to state D or
re-entry to state C, with yo < nchVB'

step in each iteration,
N <9 v Ve < A
C KTe C C

Ultimately, vo < RLTC’VB < HLTC')/A for any amount of self-loops, and since & < 3 while

in state C', a transition to state D must occur in finite time, with = = = ¢ < K%C'yA.

As shown in Figure 3.11, a transition back to state C' is possible immediately, with
’yg = 7y¢. Yet on return from state C, v < QH%C'YC, as discussed above, and the result
of the D — C' — D loop is ’ygrl < 2#,078 = 2#67}) for each return to state D from

C'. If not returning to state C', the first opportunity to transition out of D is to state
A~ , which happens at t3, when

plto) o

’YS < =B (t3) = —5(t0)6_('€@_2) ln(l_%) =7c (—si_ns(i’lylc(;yi)’yc> <N v)

44

B(to)

Figure 3.11: State D after state C'. Similar to Figure 3.7, with the initial conditions
ag = —fo = vo. By t1, a transition must have happened, either to state A, back to C,
or re-entry to state D.

(tg)
_ < sin (y¢))(HPUO—Q) _ 2(2_5@) 4 .4

4

p(tg)—rc

YA <47 e e < e (3.13)

The self loop of state D happens at time 1, and results in

. . 1—tan2 a(tg)) . pi —Tc .

Yot < =B (t1) = vhe o () <qhe PR <qh. (3.14)
TheloopA—>B—-C—-D— A" =B~ —-(C~ — D~ — A, as seen in Figure 3.8,

therefore results in

i+1
7A)

and according to Equation 3.12,

. v A —(1—
VZHSWD%DZQ (””D)V}%'

according to Equation 3.13,

Vit <2 (1_WD)2(2_RPTC)’YC = 2(2_5%)_(1_”5’:’)% = 2(1+%_EPTC)VC7

and ultimately,

v KPC

Ya < o5)vz Ca M = 2(W)¢

v PC
Sl < 2(1+HpD K) v
A - RT,
C

7‘(23 — 47‘%

Ta < (5)%2 =2

Nl

(3.15)

he)

o]
2
:)>@
VAN
2
%@

and we have shown that any of cycle in graph G must include at least one type of

loop that decreases in v, Vk > 2%.

Notice that the only states where the distance between the agent and the target
grows are states A, D and their variations A=, A;, D etc. While the transition from
state A is exclusive to state B, state D can transition towards state A~, state C, and

self-loop to state D.

Leaving state D increases the distance between the pursuing agents and the target
by the maximum relative velocity times the maximal time spent in state D. Assuming
all other states have no effect on p and -, when actually v is non-increasing in all
states, we isolate and amplify the contribution of state D to the overall increase in p

by analyzing the increase in p as result of a perpetual self loop in state D.

Let p%, be the distance on entering the self-loop iteration and piDJrl when exiting,

pat < plh 4w (COS(O) — co8 (7}7)) (t1 — to)

1+

1+cos<2D>
=ph 1+ (1 — cos ('yb)) -

46

_ i
— iy |1+ (1 = cos (4 1 - cos (vp)

2
2(30 <72;3)
cos (;D> +1- (1 — 2sin? (?)) Ccos () + 2sin? (?’)
= b =D .
cos (AYQD) cos (7215’)

4

Pt < gy (1 + 2sin (E’) tan (’?)) (3.16)

We used t;, the longest time possible to remain in state D, and ag = 7 since any

smaller « results in a smaller exit p. The addition to p as result of the ¢ + 1 iteration

of the self loop is therefore

i+1 i ilQ-ﬁ ﬁ_i_2i-ﬁ ﬁ
PD Pp < Pp + 2sin 9 tan 9 Pp = 2pp sin 9 tan 5 |

and with yp < 7,

Pt = o < P = di.

The total contribution of state D to p is therefore

Lp=>Y_d;
=0

Applying d’Alembert’s ratio test on the series produces the following result,

d n+1,_ n+1
lim |“L = Jim |22 TD |
and with equations 3.16 and 3.14,
Lo (14 2sin (22) tan () T
S b | i PHVD
n 0
L D T\ -2t . ny —22D="c
Jl)ngo‘<1+251n(2>tan<2)>e < lim (I+9p)e
PO —Tc PO —Tc PO —Tc
= lim |<1 + ’7%6_2n Drc) 6_2 Drc = lim 6_2 Drc < 17
n—oo n—oo

therefore a finite Lp exists.

We shall now assess the contribution of state A to the growth of p. Let us assume

47

that all other states in G (Figure 3.8) make no contribution to v and p, and if any
changes occur, they happen exclusively in state A. In this case there is no actual
meaning to leaving the state, other than having o miraculously return to 0 for the next

iteration. If at the initial entry, p = pg, 8 = B, and a = 0, then

V() < BHE) = Boe (K*%)(tfto) B H‘:)sin 0) (1 B 6(/{;:))(15150))

)
Since the ’yj(t) rate of decay is constant, and remains the same regardless of the initial
conditions on entering the state other than 5y = %X(to), we can arbitrarily choose
when to leave and re-enter the state, so we choose t; = to + %ln (2), and the change
per iteration for v becomes
A 1) A 21

i =2(F)qA = on(F g, (3.17)

The upper bound on the distance between pursuing agent and target on the nth itera-

tion becomes
P = D1 + % (1 — cos (%il)) In (2),

and the distance gained per iteration is

A A
Pn — Pn—1 =

(1 — cos (fy;:‘,l)) In(2) =2In(2) Y gin? (%21)

K

RS

A \?2 9
<NM®U”<%“g Zmem<w1MWCU@Q = el (2) 22D () g2

2v 2 4
< %ln (2) 22=D(3-1) g2 = %m (2) g220—m) = 1112(2)7,65321” _ A

Summing all A,, will result in an upper bound to all the contribution to the growth
of p by all variances of state A, on any possible path on the graph G (Figure 3.8). Let
us denote this bound by L4,

oo
La=Y Av=p%—pj.
n=0

> = /In(2) ,1 > In(2) o= 1
An: cP0a, | — c Pyt
ngo Z(2 rﬂozn 2 T'el20 on

Notice that

1&1 &1 &1 &1 1
PIEEDIED I SN EE
n=1 n=1 n=2 n=1

4

n=1
N8
o0
1
> 5 =1
n=1
A8
> 1
2 =2
n=0
and therefore
La=1n(2)r.32. (3.18)

Given the previous analysis of graph G (Figure 3.8), the only states that add to the
initial distance p(t = 0) are states A, D, and their variants. The maximal contribution

of any of those states combined is less than R = L4 + Lp, therefore,
JdR, 0 < R< oo | p(t) < R, Vt,

concluding the proof. |
Corollary 3.9. If

1. (t) = max {|a ()], [6(2)]},

2. k>4Y

—, and
(&

3. p(to) > re,

then Vt, p(t) — p(to) < 4re.

Proof Returning to the proof of Theorem 3.8, if k£ > 4>, then from Equation 3.11, the
global upper bound on v while in state D is

5(750)@ (m—?m)(t—to) < ’75(750)6_ (R—Q%)(t—to) _ Vg(t)

If we sample 7} (t) once every < In(2) time, we generate the series

%? = %?716_(5_2;)%1“2) = 77?712@#_1) = —ﬁ(t0)2"(2#'c_1)7

and the added distance per iteration is

\
VS
—_
|
Q
]
w0
=2
o
—_
~
~——
—
=
—~
"]
~—

1 v
o = Py = v (cos(0) — cos(1)) ~In(2) = -

K

|3
VRS
™
—~
~
S~—
[N}
=
3
|
-
=
—
)
8|
Sle
o
|
-
S—
S——
[\

D
= 21n(2)3 sin’ (7”21> < QIH(Q)CL

49

) 1) (12t 1 c 1
_ %1n(2)52(t0)2 201 (1-23%) < < @5 (t0) 555 = Z n(2)5(to) 57 = dn-

Summing all d,, we arrive at an upper bound to the contribution of state D to the

Tc

growth of p,

o0
Lp="> dn=0p5—pf.
n=0

e X1 Te
Z dn = = In(2)5% (t0) Z 3= (2)5%(to)-
n=0 =
Adding L4 (Equation 3.18), and since 82(ty) < %,

2 2 3

La+Lp<re ln(2)7r— + e ln(Q)W— = “r.In(2)7%

4 2 4 8
and if p(tp) is the distance between the target and the agent when first leaving one of
the states E or E~, then the maximal distance between the agent and the target is
p(to) + %rc In(2)72. If we take the initial conditions such that the system remains in

state E or E~ for the longest time possible, (see Lemma 3.3.1), we get

=22
R < v (cos(0) — cos(m)) <’]£' In <7T_2“Zc>> + %rc In(2)7?

2 KTe

c -1 c
< %ln (g — 1) + %rcln@)ﬂ'2 = % <ln <7T7T2 + 1) + iln(2)7r2> <Ar.

3.4 Capture

This section extends the previous analysis to explore the capture regions, i.e. the initial

conditions in (p, a, B) space from which the pursuing agent may capture the target.

Problem Statement: Given ¢, v,k, find I" C ([0,00), (=7, 7], (—m,7]) such that if
1. 3t | p(te) < re
2. pa(to) = — (po cos (ag) , posin (ag))”, and
3. 0(to) = a0 — Po,

then (po, ag, Bp) € T

To solve the problem stated above, we extend the transition table (Table 3.2) by
splitting state E, previously assigned to all cos(a) < 0 or cos() < 0, to the mutually
exclusive states detailed in Table 3.3. The cases where a(tg) = 7 and either sin(5(t)) =
0 or sin(B(to)) # 0, where left out of the discussion due to the results of the lemmas
3.4.1 and 3.4.2.

50

State System Configuration

F 5<B<m
= —T<B< -5
w cos(a) < 0and 0 < sin(a) <sin(f) <1

W= | cos(a) <0and —1 <sin(f) <sin(a) <0

X cos(a) < 0and 0 <sin(f) <sin(a) <1
X~ | cos(a) <0and —1 <sin(a) <sin () <0
Y —5<pB<—-%F,and 5 <a<m
Y~ g<B<g,and -t <a< -5
Z —5<f<0,and §<a<m
Z~ 0<pf<f,and —m1<a< -3

Table 3.3: Capturing Extension States of PCBOUP.

Lemma 3.4.1. If a(tg) = 7 and B(ty) = 0, then a(typ) = 7, f = 0, and the agent

pto) —r

captures the target in T = < time.

Proof Equations 2.3, 2.5 ensure «(tg) = 7 and § = 0. From 2.4,

/p’dt = /v (cos () — cos () dt = —2v/dt
4

p(t) = p(to) — 2v(t — to)

4

51

- }siu (8) — sin ()

------------------------ i ¥ (sin () = sin () — 2 (sin (8) — sin (a)) — &8

fsin(;’i) — sin (a)
2 (sin () — sin (@)]

cos (a) — cos () cos (a) — cos (8)

(a) State . (b) State X.

£ (sin (8) — sin (a))

cos () Jcos (8)

sin (8) - sin ()

sin (B) — sin (a)

i

cos (a) — cos () ! 2 (sin (8) — sin (@) — K3
:§(>in(3)—sin(u))—»:d (d) State Z.

(c) State Y.

Figure 3.12: The primary capture states, defined by the angle couple «, 5, and their
angular velocities.

p(to+T) = p(to) —2v(to + T — to) = p(to) — 20T =1,

U
p(to) — e

~
I

Lemma 3.4.2. If a(tg) = 7 and B(to) # 0, then &(ty) # 0 and the system transitions

to state Z or Z~ in infinitesimal time.

Proof Immediate from Equation 2.3. |

Figure 3.12 shows illustrations of the extension states, and Figure 3.13 shows their

interpretation as the system’s configuration on the plane.

52

@

1i(sin (;‘3);7 sin (@) — k8

2 (sin (8) —sin (a)) '

(a) State W. (b) State X.

=L
=L

,/"’77“\\ 2 (sin (8) — sin — kB3
% (sin () — sin Zt)\)\) @ () = n
s (8) — sin (@) — 5 E £ (sin (). sin (@)

a s

(c) State Y. (d) State Z.

Figure 3.13: An illustration of a typical configuration on the plain for each primary
system state.

Having identified the new states, we advance to the next step in Algorithm 2.1, and

identify the transitions out of these states.

Lemma 3.4.3 (State F'). If k > 2;-, and cos(B8(to)) < 0 then cos(B8(t)) > 0 Vt >
to + 72;; In (725(153)272) .

™

Proof
cos (B(to)) <0
]
B(t0)| > 5.
From 2.5,
20 k<28 —kB< B <2l B <2T — kB
Tc P P Te
Y
_ 5 Y 5 Y —k(t—to).
g7 =20 (Blty) 2) e,
—_ 90" U nlt—to).
f = 2mc+(5(to)+2mc>e t=to),
BT < B(t) < BT

53

Without loss of generality, assume ((to) > 7, then if

i s
t) = —
EMOEE:
)) T
2 to) — 2 —hlt=to) —
KTe + (5(0) KTe © 2
g
1 tg) — 22 - 2 -2
t=ts+ —1In 75&0) U’WC <ty + Te In (ﬁ(to))
K 3= 2m~c 2v T—2

then B(t) < 3 V¢ > to + 5o In (222,

Lemma 3.4.4 (State W). If k > 2.2, and
1. p(to) > e,
2. cos(a(tp)) < 0,
3. cos(B(ty)) > 0,

4. 0 <sin (a(to)) <sin (B(t)) < 1;

1. tlzto—l—%ln(Blto)),

m—a(to)

2ty =to + 1n(26(to))

. m—a(to)

cot (B“OQ)HT) “+tan(B(to))) .

ot (M) +tan(B(to))

3. t3 = tO + vcoS(E(tO)) hl (

and either
1. Jt.|to < te <ty such that p(t) =re, or
2. . |t1 < tx < to such that sin (a(ty)) > sin (B(ty)), or
3. Jty |tz < t. < ta such that sin (a(ty)) <0, or

4. sin (B(t2)) < sin (@)
Proof From Equation 2.4,
p = v (cos(a) — cos(f3)) <0,
From Equation 2.5,

B=Z@mwwwmm»—mﬁs(l_ﬁ>@

54

sin (B(to))

sin (a(to))

Figure 3.14: Lemma 3.4.4 proof outline. Having p shrink at this state, we can find
the bounds on , which shrinks, and on a which grows. Then we can find ¢;, when a
transition to state X becomes possible, and t2, where the state must exit. Depending
on p(tp), a(tp) and B(ty), state W can transition into either the capture state, X, Y,
Z~, or re-enter W.

B> —kp;

Blto)e™70) = B=(t) < B(t) < BT (1) = Blto)elre) =) (3.19)

From Equation 2.3,

&= % (sin(B) — sin(a)) < Tﬂ (sin(B(to)) — sin(a))

a(to) < aft) < o (1),

55

a’(t) =
6(t0) — 2arccot ((COt (M) + tan (6(750))) 6% cos(B(to))(t—to) _ tan (,B(t()))) .
(3.20)
The state exits when a(t) = 7, which could only happen after a™(t3) = 7,

Oz+(t3) =T

B(to) — alto)

= B(ty)—2arccot <<cot (> + tan (5(t0))) ere 0s(Bt0))(ts=t0) _ o (ﬁ(to))>

2
\
cot (5(750; — W) -+ tan (ﬂ(tO)) = (cot (W} + tan (5@0))) er% cos(B(to))(t3—to)
\
re cot (2197) + tan (B(t0))
T " (Cot (e + tan w(to)))

Let ¢; be the first opportunity for sin(«) = sin(/3),

™ — alt) = B(to)e 171

\
1 B(to) >
t1 =1t —1
! D+/~$n<7r—oz(t0) ’
and ¢ the moment at which the upper bound on S reaches @
—alt v _
™ ;3‘(0) _ 5(t0)€(rc fi)(tQ to)

4

B 1 T — afty)
tg—toﬁ-v_ﬂln(23(t0) >

Tc

At time tq,

B(tg)

5 (1) = (to)e =) 10) — (ggpo (o) (k{288) o) _) (et (258

= it f(?&o)) Yt (" ;50(; ”) o

Lemma 3.4.5 (State X). If x > 2>, and
1. p(to) > e,

56

2. cos(a(tp)) <0,
3. cos(B(ty)) >0,

4. 0 <sin(B(to)) < sin (a(ty)) < 1;

then
_ 1
1.t =to+ o,
p 1 141 B(tg) Ke(tg))
Dt =t + < + In e — ,
2 0 ® sin(a(to))—sin(—méo))
3.ty =ty + 2o ollo)—3 +1;
s 0 v sin(a(tp))—sin 5(20)) ®
and either

1. Ft, |to < ti < to +t3 such that p(ty) = re, or
2. 3t |to < tx < to such that B(t«) =0, or

3. Ity |to < t. <tz such that a(t,) < 7.

Proof While in state X, from Equation 2.4,
p = v (cos(a) —cos(B)) <0,

from Equation 2.3,

a = p (sin(B) — sin(a)) < 0,

and from Equation 2.5,

B:%@m@%ﬁmw»—ﬁﬁ<d<0

Also,
B<—kp

J
B(t) < B(to)e 171,

and Vt >t = to + =,

€ rp(to)

. (Blto) v (sin (ﬁ(éo)) _sin(a(to)))) .

Solving for to, when [5(t2) < 0,

rp(to)
N (ﬁ(to) - v (Sin (5(20)) — sin(a(to)))) o—rlt2—t1)
e Kp(to)
\

i) (S (a(t0) —sin ("))

<sin (alto)) — sin (5 (20)>)> p—rlta—t1)

4

Hp?to) (sin (alto)) — sin (/Bi‘))»

= (ﬂ(tO)ﬁp(tO) " (Sin (alto)) — sin (5(20)))) o—H(t2—t1)

erp(to)
4
B(to)kp(te) — ve (sin (a(to)) — sin (20)))
ve (sin (a(to)) — sin (2222))

N(tz—tl)

=€

After tq,

until ¢35 when

o (t3) = a(to) — %to) (sin (a(tp)) — sin <5(20)>) (ts —t1) = g

4
(to) afto) — §

Q.E.D.

58

Lemma 3.4.6 (State Y). If x> 22, and

3.ty =to+ e (24— 7),

4.ty =to+221n (tan (a(;fo)» ;

and either
1. 3t |to < t. < max{to,t4} such that p(t.) =r¢, or
2. 3t |t1 < t. <ta such that B(ty) > —7%, or

8. Ity |tz < tx < tsq such that a(ty) < 3.

sin (a(tp))

Figure 3.15: Lemma 3.4.6 proof outline. t; and ¢y are calculated by the bounds on
sin (f), while ¢3 and t4 are calculated by the bounds on sin («). A transition to state Z
must happen sometime between t; and ¢y, while a transition to state C; must happen
between t3 and t4, unless the agents captures the target before the transition.

Proof From Equation 2.4,

p = v (cos(a) —cos(B)) <0,

59

From Equation 2.5,

B= %(Sm(ﬁ) —sin(a)) — kB < kB < 0;

B> -2 — kp;
rc
\
_2,;7]“0 + (B(to) + 2;;0> e—Hit—to) _ B () < B(t) < ﬁ+(t) _ ﬁ(to)e_’i(t_to).

Therefore, 8 grows, and may reach —% by #1,

B¥(t1) = Bltg)e ") = —g
4
t1 =to+ éln <3 67(rt0)|> :

and by t2, 3(t2) must be greater than —7%,

Blts) > B (ta) = —2— + (B(to) P)w(tzto) o7

KT KTe 3
U
2% 4 B(t
to =1t + —In (MCU IB(WO)>
Kre 3
From Equation 2.3,
& = — (sin(B) —sin(a)) < ——ssin(a) < 0;
Po
Q> —2—;
Te
U

(3.21)

a(to) — 2 (t —to) = a™(t) < a(t) < o (t) = —2arccot (— cot (a(to)> eﬂvo(t_t(’)> .

2

Tc

We can now find ¢3, the earliest point at which o might cross below 7.

a_(t?’) = a(tO) - 2713 (t2 - to) = g

¢

re (a(to) 7r>
ty = to + — -,
3 o+ v (2 4)°

60

and t4, after which o must be less than 7,

Q.E.D.

Lemma 3.4.7 (State Z). If k > 27%,

1. p(to) > e,

and either

1. 3t |to < to < to such that p(ti) = re, or

2. 3ty |t1 < te <tz such that a(ty) < 3.
Proof From Equation 2.4,

p = v (cos(a) — cos(f3)) <0,

From Equation 2.5,

v

8= p (sin(B) —sin(a)) — kB < —KB < 0;

B> —2r3 — Kf;
)

2 (B(to) + 27—)) = 5 (8) < B0 < Y0 = Alto)e .

61

sin (a(tp))

sin (8(to))

Figure 3.16: Lemma 3.4.7 proof outline. We calculate ¢; and ¢5 from the bounds on «.
By to, the system must transition to state Cf.

Therefore, [is asymptotically locked between 0 and —2,{%6 > —1, and

—\f < —sin(1) < —sin (2 v

> < sin(f) < 0.

KT
From Equation 2.3,

&= p (sin(B) — sin(a)) < o sin(a) < 0;

&> —23;
Te
4
alto) — 2% (t —to) = a™(t) < a(t) < a*(t) = —2arccot (— cot (a(;f@) eﬂvo(tt‘))> .

Cc

Let t1, to the earliest and latest points at which a can cross below 7.

o™ (h) = alt) =2~ (b —to) = 3

C

\
" :t0+% (Oé(zto) N Z) ;
a™(ty) = —2arccot (— cot (a(;fo)) epvo(trto)) = g
\’
cot (()> ero (12710 _ ot <4) =1
\

With the lemmas above we can extend Table 3.2 to include the new states and their
transitions, and generate a new transition table, Table 3.4. Figure 3.17 illustrates how

these adjustments fit into the graph G.

Figure 3.17: All states that have a path to the capture state.

63

H State \ System Configuration \ Exit Condition ‘ Transition H

p=Tc Capture
0<a(t)<Bt)<i | A
F T<B<7 0< —alt)<B{t)<Z | D
Bt) =3 w
— Y
p="Tc Capture

w 0 <sin(a) <sin(f8) <1 sin () = sin (é) X

a=m z<pB<5 | Y™
a=m0<B<% |Z°
p=re Capture
X . . p=0 Z
< <
0 <sin(f) <sin(a) <1 a=1 B
p=re Capture
y —T<f<-T a=3 &
_ T
B=—3 Z
. p=rc Capture

Table 3.4: Capturing Extension Transitions of PCBOUP. The system configuration for
these states includes § < |af < 7.

Figure 3.17 shows all possible transitions between states that may eventually lead
to capture; yet capture is not guaranteed, as can be seen in Figure 3.8, where the outer
states have no path back to the capture state. To discover which initial configurations
may lead to the capture state, we reverse the direction of the edges of the graph G
(Figure 3.17), and by doing so we reverse the transitions between systems states, in a
manner that flows from the capture state to all possible initial conditions. We denote
the reverse graph G~. There is no path in G~ from the capture state to the outer states
A, B, C,D, A=, B~,C~,and D, so we discard these states.

Since we are dealing with bounds on the actual kinematics of the pursuing agent,
we treat each reverse state as an addition of a region of uncertainty to I, i.e. for every
state in G, when entering the state, we add the volume trapped between the bounds
on (p, «,) while in this state to I', since the configuration that led to capture must be
in this volume, alongside configurations that did not result in capture. The uncertainty
is a result of having the entire volume added to I' instead of only those configurations

that ultimately resulted in capture.

Lemma 3.4.8 (Reverse State F'). Entering state F in G~ dilates the area of uncer-
tainty by a circle with radius r.In (1 + ﬁ) < %rc.

Proof We have shown in Lemma 3.4.3 that the maximal time spent in state F is Tp =

52 In (250__22>, where in this case [y is taken so T could assume the maximal possible

64

value, i.e. By = m, and therefore,

Te 2m — 2 Te 7r—2-|—7r> Te < T >
r 2vn<7r—2> 2vn< T—2 ST Cl—

While in state F', cos(8) < 0 and we have no information regarding «, therefore from

Equation 2.4,
p<v(l—cos(B)) < 2uv,

and

Ap<2va=rcln<1+ U)
T™—2

is the maximal addition to p while the systems is in this state. The reverse flow
terminates at this state and with 8 = w. Since F' and its symmetric state F'~ are
the only sink states in G~ (Fig. 3.17), then any traversal on the graph must end with
iAa

)

either, and with an addition of Ape —7m < Aa < 7, to all points in the area of

uncertainty, resulting in a dilation of the area of uncertainty by r.In (1 + %) |

Lemma 3.4.9 (Reverse State W). If the system enters state W in G~ at time to + T
with oy, B1, and p1, and exits the state with oy, By, and pg, then

1. o — 01571 < ap < a1

2. p0<p1—2vcos(a1)ln(2)

T—aq

Figure 3.18 shows the maximal difference in p as function of the minimal o.

Figure 3.18: Reverse state W. Maximal magnitude and minimal «g, (po — pl)ei(”_ao).

Proof While in state W, o > m— 3 If entering state W from state X, then oy = 7w — 3y,

otherwise, ay > m — (1.

65

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Let T be the maximal possible time spent in state W; then by Eq. 3.19,

us
T = e ln(fo)<Tcln(2)
RTe — U ™ — (1 v ™ — Q1

Arbitrarily selecting &1 = (7 — %e‘l) we get an upper bound on the time spent in state

W for any § < a; < ay,

v T™— Qg v 7r—7r(2671) v

2e

With 7' we can calculate the minimal possible g such that a; =7 — 4,

&= % (sin(B) —sin(dy)) < 2 (1 —sin(dy))

Te
)
ar < ag + rﬁ (1 —sin(@1)) T = ap + (1 — sin(d1))
g

ap > aq +sin(dy) — 1 > a3 — 0.157.

Also,
p = v (cos(a) — cos(f)) > v (cos(ay) — cos(B1)) = v (cos(a) — cos(m — 1)) = 2v cos(ay)

\
p1 > po + 2vcos(aq)T,

and for § < ay < a,
p1 > po+ 2vcos(an)T = po + 2r. cos(ar)

)
po — p1 < —2r.cos(ay).

If &1 < a1, then B < 77, and if we restart the clock when 8 = 7=, then By < 7, and

2¢?

é1 — 0.15m < ap. If we let another T go by, the maximal possible a; becomes

T, ,—1

AT T 5€
T=="="In|2—
v v T — Q9

66

oy < ag + 1"% <sin (;Tel> — sin (7562)) T = ag + (Sin <72Tel) — sin <72Te2)>

ag > o + sin (;62> — sin (gel) > — 0.117.

Also,
p = v (cos(a) — cos(B)) > 2v cos(a)

4
p1 > po + 2vcos(ar)T,

and for &1 < aq < ao,

A

p1 > po + 2vcos(an)T = po + 2r. cos(aq)

g
po — p1 < —2rccos(ay).

We can now restart the clock again and again until eternity, and the following will

remain true:

1. 015 <ag—a1 <0

2. po—p1 < —2vcos(ay)In (W_%Oq). [|

Lemma 3.4.10 (Reverse State X). If the system enters state X in G~ at time to+ T

with a1, B1, and p1, and exits the state at time tg with ag, By, and pg, then
1. 5§ <ay<ai, and

2. po < 2.2p1 + 0.33r.

Proof State X exits, according to Lemma 3.4.5, in either t3, to, or sooner if capture

occurs. For convenience, we choose t9, though it might take longer than ts.

p(to) a(to) — 3

t3 =tg + .
v sin(alt)) —sin (20)) s

67

During this time « shrinks,

and so does p,
p=v(cos(a) —cos(f)) <w (cos (72r> — Cos (B(to))) = —wcos (B(to)),

p = v (cos (a(to)) — cos (0)) = v (cos (a(to)) — 1)
\’
v (cos (a(to)) — 1) (ts — to) < p1 — po < —vcos (B(to)) (ts — to) -
4
po < p1+v (1= cos(alto))) (ts — to)

The only entry into state X from another state happens from state W, in the
moment B(tg) < ™ — a(to), just after 5(t9) = m — a(tp). Exit will happen either to Z
with 8 =0, By with a = 7, or capture. In any of these cases, a transition will happen
before the time it takes for the case in which ag = 7 — fy = %77, since 8 < & < 0
while in this state, and for any ag =7 — 5y > %W, B will reach zero faster, and for any
ag =m— By > %7’[’, a will reach 7 faster.

Therefore,

po < p1 + v (1 = cos (a(to)) (ts — to)

=p1+v (1 o8 <i7r>) (to * p(z()) sin (a(:ﬁoz;f(ﬁ(to)) ! % : to)

4

:p1+(2—\/§)\%+;(2—\/§>

p0<1+z\/§—\/35_1112(fe)> §p1+2%(2—\@)<p1+&(2—\/§)

4

4y/2 — 8sin () N (ﬂ—Qsin(%@)) <2_\/§)r
(4+7r)f—8sin(ﬁ)—27rpl (4+m)v2—8sin (&) —21 ©

< 2.2p; + 0.33r,

po <

Q.E.D. (]

Lemma 3.4.11 (Reverse State Y'). If the system enters state Y in G~ at time t; =
to+ T with a1, P1, and p1, and exits the state at time ty with g, PBo, and pg, then

g v _m
1. t1 —ty = %ln (W),

_
Kre 3

68

2. 5<a(to+T) =1 <at) <alty) =ap <7, and
3. po < p1+ 2re.

Proof The maximal time spent in state Y is the time required for the lower bound on
B(t), starting at —7F, to reach —%, i.e. f1 > —%. From Eq. 3.21,

1. (2575
T=—ln|-e 2,
" “(%—’5)

<a(to+T) < a(t) < alty) <.

« shrinks, therefore

|3

The maximal pg as a function of p; can be computed,

p>v (COS () — cos (-g)) =v <cos (o) — ;)

\
p1>po+v <cos (o) — ;) T
I

< < (ao) 1)11 (2&—5)
po<pr—vlcos(ag)— =] —In|—=—=
2) K 2-Y —%

KTc

<rltg+T) - (cos(a(to)) _ ;) In (1:§>

) |

>TC<P1+2TC

4

po— <5 (5 coslali)) n (1:

vl

ol

Since ag < m,

SIE

< S (L2 < S (i
Po P1+4n 1_% Te P1+4n 1=

ol

Lemma 3.4.12 (Reverse State Z). If the system enters state Z in G~ at time t; =
to + T with o1, B1, and r1, and exits the state with ag, By, and rg, then ag >
2 arccot (cot (%) e™?).

Proof The maximal possible time to remain in state Z is the amount of time to capture

the target if the state never exits.
p =v(cos(a) — cos(B)) < v (0 — cos (g)) = _%

69

Y

Figure 3.19: Reverse state Z. Maximal magnitude and minimal aq, (pg — p1)e’("=0),

4

T =20,
v

According to the proof of Lemma 3.4.7,

a1 < at(t) = —2arccot <— cot <a (t0)> 82> .
4

2 arccot <cot <%) e_2> < ag.

Corollary 3.10 (Reverse State By). If the system enters state By in G~ at time to+T

with aq, B1, and p1, and exits the state at time tg with ag, Bo, and pg, then

1. p~(to+ 1) = plto) — £ (1 — cos (a(to))),

2. a=k

v _ v 1
p~(tot:) — Plto) K= ry (1—cos(a(to)))’

B(to)+a (sin(a(to))—sin (@))

3. b= @L)Jra(sin(a(to))—si“(@))’

4. to :t0+%ln(b),

5.0~ (t2) = a(to) + (L +b) Blto) +a (sin (a(to)) —sin (2U22)) (1= b—In (b)),

+ —(to)_pt
X -— cos(a(tO)JrQB <t2)) sin<" (t2)-5 (tz))
7. t3=ty— =1n s

+ —(t)—BT
ﬂ+(t2)+np2(1t’o) cos(a(tOHf (tQ))sin<°‘ “2)2[3 (tz))

70

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

8. 0<ap<3,and
9. po < p1 —|—v(t3 —to).
Proof From the proof of Lemma 3.3.3. |

Note. State Aj, which is only accessible from State By in G, increases p, i.e. pg < p1,

and therefore does not contribute to I'.

Lemma 3.4.13 (Reverse State C7). If the system enters state C1 in G~ at time to+T

with ay, B1, and p1, and exits the state at time tg with ag, By, and pg, then

2. po < ldr..
Proof When in State C7, « shrinks. Let T' = t; — ty be a constant time interval, then
p = v (cos(a) — cos(3)) > v (cos(a) — cos(0))
U
p1 > po + v (cos(ag) — 1) T = pg — 2vsin? (O;O> T > po — vtan <0;0> T.
As discovered in Lemma 3.3.4,

Q= p (sin(B) — sin(a)) < —— sin(«)

Po
J
tan (O‘ét)> < tan ())
U

tan (?) < tan (O;O> ef%T.

Arbitrarily choosing T' = 22 1In(4), we get

_ v POy 1
tan (m) < tan (a0> e ro o In() = —tan <ao) .
2 2 4 2

_ v PO
Note that since p shrinks in State C, then e »i v In(4) < i, Vi, and therefore,

p2 > p1 — vtan (O;>T> po — vtan <O;O) T — vtan (O;I>T

= po — poln(4) (tan <O;°) + tan <O;1)> > po — poIn(2) tan (O;O) (1 + i)

4

71

[ay

n—

Pn > Po <1 —In(2) tan <O;O> Z 411>

1=

¥
oo (1w () 1) = - e (3))

and the maximal contribution of State C7 to I' is if ap = 5 and the system remained
in State C7 until the end of time. Note that transitioning to D; would not contribute

to I', as p increases in State D1, therefore

4
poo = 10> po (1 3@ tan (7))

4

1 — 21n(2) tan (%))

Q.E.D.]

po < (< 14r,

Theorem 3.11. A bounded subspace I'(k,v,7.) C ([0,00),(—m, 7], (—m, 7]) ewists,
such that if an agent (2.1) governed by the bearing-only control law (3.5) with k > 27,
in pursuit of a target moving in a straight line (3.3) ultimately captures the target, then

the agent’s initial configuration (pg, g, Bo) € .

Proof Lemmas 3.4.1 - 3.4.13 prove that for each state that the system passed through
on the way to reach the capture state, the entry coordinates were limited as a function
of the exit coordinates. Each of the states adds an area to I'. According to the previous
lemmas, Figure 3.20 shows all possible paths in G~. Having a finite set of paths, where

each of the nodes contributes a bounded addition to I', concludes this proof. |

72

R

‘@/
QA\\," /
SIGHG

Figure 3.20: All Pos

3.5 Simulation

y J)
~ { ~
v
~ < 4
t
'S
N bnd
x t

(a) The agents turn to face the target.

(c) Agents that fell behind the target asymptotically align their velocities with that

of the target.

Figure 3.21: Simulation results showing that with x = %—7:, all agents either capture the

target or track it.

Using NetLogo[Wil99] to simulate our model (available at our laboratory’s web-

site!), we can illustrate

lation run with 20 agents with randomly generated initial conditions (p(to), a(to), 5(to))

and uniform parameters (v, 7, k) = (1, 30, E) in pursuit of a single target. The target

(b) Some agents capture the target.

our findings from the previous sections. Fig. 3.21 shows a simu-

1

"https://mars.cs.technion.ac.il /simulations/

74

is a circle with radius r.. The simulation confirms our analysis, that those agents that
do not capture the target fall behind it and gradually align their velocity with the
target’s velocity. The figure shows one simulation run at three consecutive moments.
Fig. 3.21a shows the pursuers near their initial positions, scattered randomly on the
plane. Fig. 3.21b shows the first agents capturing the target, while Fig. 3.21c shows
the pursuers settling into tracking the target.

To investigate which initial conditions lead to capturing the target rather than
tracking it, we generated the simulation presented in Fig. 3.22. In the simulation we
sent 400 agents to chase after the same linearly moving target with uniform parameters
(V,Te, k) = (1,30, %5) and initial conditions (a(tp), 5(t0),r(to)), such that all agents
share the same ((tg) and have varying a(tp) and r(tg) according to their initial position.
The darker regions mark the initial positions (determined by a(tp) and r(to)) of agents
that eventually captured the target, while lighter regions those of agents that ended up
tracking the target instead. We noticed that 5(¢p) plays an important role in shaping
the capture region, albeit to a lesser extent than «a(ty) and r(¢y). For instance, in the
simulation that resulted in Fig. 3.22a, all the pursuing agents were initialized with
B(to) = 0, meaning the target was straight ahead of every agent at ¢ = ty3. Notice
that the capture region for this experiment is smaller, perhaps counter-intuitively, than
the capture region of the experiment in Fig. 3.22c, where all agents were initialized
with a heading opposite to where the target was. Arguably less surprising is the result
shown in Fig. 3.22b, where the initial bias of 90° caused the agents beginning their
chase directly under the target to go in the opposite direction of the target, missing
their chance to capture, while the agents starting directly above the target started
their chase with their velocity parallel to that of the target, allowing them to adjust
their alignment without falling far behind the target. The overall observed result in
the B(tg) = 5 case is a bias of the entire capture region towards the upper part of the

experiment arena.

75

m
mEEE
fegond mmEEEg
mEEEEEEBN
SR arture mEEEEEEEH®
E E EEEEEBSHS
HE E B EEEENEBSHS
B eking HE B N EEENEBENHE EBRER
HE E N EEENEBSNHEN
E E EEEEESEHN
E N EEEEEHN
E N EEEEBN
EEEEEN
EEEE
EEE
(@) Blto) =0 i
T m om0
| mEEEE
EEEEEN
m N EEEEBN
mE E EEEEEHN
mE E EEEEEESH
E E N EEEENBSNHEN
E E EEEEEBSHS
HE E N EEEESHN
E E N EEENBNBRR
E E EEEEENBSHEN
E E EEEEEHN
E N EEEEBN
E N EEN
EEEE
-
() B(t0) = 3 i
I mmE
EEEEN
mE N EEEN
mEEEEEEN
mE E EEEEESN
mE E EEEEEESEHN
HE E EEEEEBSHS
HE E EEEEENBSHES
E E EEEEESHN
HE N EEENBNBER
E E EEEEEBSHS
HE E EEEEENEBSHES
HE N EEEENEBSNHEN
HE E EEEEEHN
E N EEEEBN
E N EEEN
= EEEE

(c) B(to) = .

Figure 3.22: Capture Regions. The markers are drawn in the initial locations pq(tg) =
r(to)e!@to)=m) — _p. (t9) of each of the agents participating in the experiment. Dark
markers represent initial conditions that resulted in capture of the target, while light
markers represent initial conditions that resulted in tracking of the target instead. The
target’s initial location is in the center of the arena.

76

Chapter 4

Homing of Unicycle Agents with
Crude Sensing Capabilities

In this chapter we use our method, presented in Chapter 2, to generate a state machine
with which we solve the homing problem of Unicycle-Agents with Crude Sensing over
a Limited Sector of Visibility (UCSLSV). The homing problem is a variation of the
pursuit problem, discussed in the previous chapter, where the target is stationary, and
referred to as a beacon. The agent in this chapter does not acquire an exact reading
of the bearing towards the beacon, but instead has only a crude sensor only capable of
detecting whether the beacon is within a limited sector centered at the agent’s velocity

direction, i.e. front.

4.1 Unicycle-Agents with Crude Sensing over a Limited
Sector of Visibility

An agent with constant speed unicycle kinematics switches between two rotation rates:
a mild rotation rate if the agent detects a stationary beacon in its limited visibility

sector, and a severe rotation rate if it doesn’t.

Figure 4.1 illustrates the following description. Let a stationary beacon reside on
the origin. An agent with a forward facing sensor, with a sensing sector with a central
angle 0, 0 < o < m, can either sense the beacon, if 0 < |3] < §, or not if § <[] < 7.
The agent’s steering is controlled by the following, simple, equation,

Y { Ié

3 0<r<R. (4.1)

IA N
3 N9

<
| <

SIS e
S}

Pta

beacon
N

Figure 4.1: The Homing Problem.

This variation of the Unicycle Pursuit problem poses the question that is always
of interest in pursuit problems: under what conditions is it guaranteed that the agent
captures the target, or in this case, reaches the beacon. It turns out that most cases
do not result in actually reaching the beacon, yet if 0 < o < mwand 0 <r < R < o0,
then the agent falls into and remains within a compact space containing the beacon in

finite time, as formalized in the following statement.

4.1.1 UCSLSYV Problem Statement

An agent with kinematics (2.1) with constant speed v switches its rotation rate accord-
ing to its perception of a stationary beacon (4.1). Describe the agent’s trajectory and

find T and a compact subspace D C R? containing the agent’s trajectory V¢t > T, such

that . .
(1 — cos (2>> r<p(t) < (1 + cos <2>) T.

4.2 System States

The first step, prescribed by Algorithm 2.1, is to categorize the relationship between
the agent and its target, the beacon in this instance, by unique conditions on (p, o, 3),
which vary form the those of the previous chapter due to the different control law, and
the target being stationary.

For instance, the definition for o remains the same, but the expression changes to

tan (a) = %; (4.2)

78

also,

&= %sin 8), (4.3)
p=—vcos(B), (4.4)
and
Bzo’z—éz%sin(ﬁ)—w
\
b= %an(ﬁ)—}% 0< |8l <% (4.5)
csin(f) -7 §<[Bl<m.

To categorize the conditions on (p,a, 3), we start with B to see when 8 grows or
shrinks.

Assuming 0 < |f] < §, we test when B =0,
=0

B=%ﬁmm—

=y

4
0 <p=Rsin(f) < Rsin <g>)

and we classify all configurations with 0 < p < Rsin (%) and 0 < || < § as State A,
while all configurations with Rsin () < p and 0 < |3| < § are classified as State B.
Similarly for § < |g] <,

Bzgamm—fzo

”
%
0<p=rsin(f) <,

we classify all configurations with 0 < p < r and § < || < 7 as State a, while all
configurations with r» < p and § < |B| < 7 are classified as State b.

Table 4.1 lists the system states.

4.3 State Transitions

The following lemmas detail the exit conditions of the states in Table 4.1.
Lemma 4.3.1 (State B Exit Conditions). If
1. Rsin (§) < p(to), and

2. —% < B(to) < %,’

79

State System Configuration

A 0<p<Rsin(f)and -§<pB<$
a 0<p<rand §<|f| <7

B Rsin(%) <pand —-§ <p<$
b r<pand § <|B[<7

Table 4.1: System States of the Unicycle-Agents with Crude Sensing over a Limited
Sector of Visibility Homing Problem.

then
1.ty =ty + o,

and
1. Tty to <t <t1,|B(ts) ==%, or
2. 3y, to <ty < t1, | p(ts) = Rsin ().

Proof while in State B, f shrinks,

p>Rsin(g>;B<

o) Q

and p shrinks as well,

0 < cos (Z) <cos(B) <1,
N2
plto) — v(t = to) < p(t) < plto) — veos (3) (¢ = o) < o).

Exiting State B is therefore possible only if § < —%, or p < Rsin (%).
The maximal time spent in state B is the maximal amount of time the beacon can

stay in the agent’s sector of visibility, i.e., the time it takes for the beacon to cross from

80

one side of the sector to the other while still in State B. Let tg and ¢; denote the entry

time and exit time such that T = t; — tp is maximal,

v
d=a—-p0=—
a—f 7
4
v
0(t) = O(to) + 1 (t —to);
O(t1) — 0(to) =0
4
Sti—to)=5Tp=0
4
Tp = Ea.
v
If entering State B with ((to) = § and leaving with 3(t1) = —% and p(t1) >

Rsin (%), then
plto) — pltr) = 2Rsin (7).

see Figure 4.2. |

t=ty+2T

Figure 4.2: Transitions from states B and b, while p(t) > Rsin (§).

81

Lemma 4.3.2 (State b Exit Conditions). If

and
1. 3y, to <te <t1, |0< B(ts) < 5, or
2. Ty, to < tu < ty, | pte) <71, or
8. Jtg, to <to <t1, | Bta) =5 and p(t2) =r, and B(t) = § and p(t) = r Vt > t5.

Proof while in State b, 8 almost always shrinks,

p>r; %S!B\Sﬂ
N2
B—Z(sin(ﬁ)—ff) <0,

Exiting State b is therefore possible only if 3 < §, or p < r. However, if at some time
ta, p(tZ) =rand ﬁ(tQ) = %7 then

L ™ _
p= vcos(2> 0,

and the system never leaves State b, with p =r and 8 = 7 from ¢ on.

If State b ever exits, then the maximal time spent in state b is the maximal amount
of time the beacon can stay outside the agent’s sector of visibility, i.e., the time it takes
for the agent’s orientation, 6, to complete a m — o turn. Let g and ¢; denote the entry

time and exit time such that T, = t; — tg is maximal,

B(tl—to):BTb:ﬂ'—a
T r

4

.
Ty="(r—0).
b U(W o)

If entering State b with 3(tg) = —§ and leaving with 3(t1) = § and p(t1) > r, then

p(t1) — p(to) = 2rsin (g) ,
see Figure 4.2. |

Lemma 4.3.3 (State a Exit Conditions). If
1. 0 < p(ty) <r, and
2. % < |B(to)] <
then
1.ty =tg+ 27,
and either
1. Jty, to <ty <t1, |0<B(ts) <5, or

2. Ht*, to <ty < t1, | r < ,O(t*).

Proof In State a, p can grow or shrink, depending on 5. In addition, 8 can either grow

or shrink; it grows when

g (sin(ﬁ)—i) S0 = p<rsin(B),

RS

and shrinks when
v

p(sin(ﬁ)—f) <0 = p>rsin(f).

Yet if § = —9, then rsin (8) = —rsin (§) < p, Vp, and therefore the only transition
due to f is if f = § and p > rsin (§).

Note that there must be a transition out of the state before the agent has completed

a full circle with 6 = o

(%
0(11) — 0(to) = 27 = = (11 — to)
4
t1 =t + 297T,
r

since if p(ty) < r, and the agent completes a full circle, then there must be some point

along the agent’s orbit in which p > r, and the state exits. |

83

Lemma 4.3.4 (State A Exit Conditions). If
1. 0 < p(tg) < Rsin (%), and
2. =5 < B(to) < §
then
1. t1 =ty + o,
and
1. 3y, to < te < t1, | B(t) = =% and p(ts) < p(to), or

2. Fty, to <t < t1, | Bts) = § and p(t.) < plto).

Proof From Equation 4.4,
p=—vcos(B);

while in State A,
0 < cos (g) < cos(B) <1,

and p shrinks,

plto) — vlt — o) < p(t) < plto) — veos (3) (¢ = t0) < plt).

However, § can either grow or shrink; it grows when

B:(sin(,@)—g) >0 = p<Rsin(p),

and shrinks when

Z(gmm-é) <0 = p> Rsin(f).

Q.E.D.]

Table 4.2 summarizes the lemmas above.

4.4 Paths and Cycles in G

Having followed Algorithm 2.1 to generate G, we can now make the following observa-
tions based on the paths and cycles in G, which ultimately lead us to the solution to
the UCSLSV problem, in the form of Theorem 4.1.

Lemma 4.4.1 (Cycles with § = —%). Between every consecutive instances when 3(tg) =

B(tl) = _%’

1. tlzto—i—%(%’—a)—{—%a,

84

H State \ System Configuration \ Exit Condition Transition H

B=35,p<r
. B=—-%5,p<r
A |0<p<Rsin(§)and|f] <% = %,pZT
B=5.p2r1
rsp
a O0<p<rand §<|B]<7 B <%, p<Rsin

B <3, p> Rsin
B <G, p<Rsin
<%, p>Rsin

N
[| pIaplafpolapola
S | N | [S | |

N ESEESHIESEES AR uv]| BeN | Ruv| IsNES T RS RS RN

b < d 2 < <
rspand g SIBIST E = p(h) and Bl) = B
p<r
ﬁ:_%)pZT
B Rsin (%) <pand || < § p=-5,p<r
p = Rsin (§)

Table 4.2: Transition Table for the UCSLSV problem.

2. p(t1) = p(to) —2 (R —r)sin ().
Figure 4.2 illustrates the following proof.

Proof At tp, the system exits states A or B with 8 = —F, and the agent rotates around
a fixed point at distance r from it, until completing a 27 — ¢ arc, placing the agent at
time ty = to + L (2m — o) at a distance p(t2) = p(to) + 2rsin (§) with S(t2) = §. At ty
the system transitions back to either A or B, and the agent rotates around a new fixed
point, at distance R from it, until completing a o arc at t; = to + %O’ with B(t1) = =5
and p(t1) = p(t2) — 2Rsin (). []

Lemma 4.4.2 (Short cycles with 8 =). If the system transitions from States A or
B to a or b at ty with B(to) = § and rsin (§) < p(to) < Rsin (§), then

1oty =to+ 200 T tan (9) <t + B tan (9),

veos(%)
2. p(ty) =rsin (%),

3. ,B(tl) - %7
and Vt > tq, |B(t)] > 5.

Proof Since B(tg) = § and rsin (§) < p(to),

ey =2 (s () - 2) <2 -n =0

and States a or b transition immediately back to States A or B, where p(ty) < Rsin ()

B(to)zz<sin<;)—£>22(1_1):0

85

and

p = Rsin (

N[Q
N—

S
Il
ﬁ

r<p
Figure 4.3: UCSLSV DFSM

and the system transitions back to either a or b and so forth and so on, keeping 3 = 7,

while

p = —vcos(f) = —vcos (g)
U
plt) = plto) ~ veos (T) (£~ to),

until p(t1) = rsin (§),

p(to) — rsin () R—r (J)
’UCOS(%) <to+ " tan 5)
g

while keeping 3(t1) = §. From that point on, the system only transitions between

states a and b, see Figure 4.4. |

t1 =tg +

Lemma 4.4.3 (Long cycles with 8 =). If the system transitions from States A or B
to a or b at to with B(to) = § and 0 < p(to) < rsin (%), then

Lk= |75,

2. to =ty + M I (21 — o) + m By Bt pan (3),

8. T, t1 <t, <tgq, | ﬂ(t*) = %, and p(t*) = rsin (%)’

oo

L2

{2
22

v,
%

<7
] 77

Figure 4.4: An agent located at p,(to), traveling upon the r radius circle with its center
at ¢4, never perceives the beacon (located at O) if it is on or inside a concentric circle

with radius 7 cos (§).

and Vt > tq, |B(t)] > §.

Proof Since ((tg) = § and 0 < p(tg) < rsin (§),

=y (0 (3) - 240) S0,

and at time t; < to+ = (27 — o), B(t1) = §, and p(t1) = 2rsin (§) — p(to), see Figure
4.5. Notice that since 0 < p(tp) < rsin (%),

. g . g . o X o
7 sin (2) < p(t1) = 2rsin <2> — p(to) < 2rsin (2) < 2Rsin <2> .

If also r < %, then p(t1) < Rsin (%), and the conditions of Lemma 4.4.2 apply at ¢i;

87

otherwise, % <r < R,and ta <t + %0’, B(t2) = %, and

plt) = 2Rsin (3) = pltr) =2(R ~r)sin (§) + olto)
y

0 < p(t2) < Rsin (;) .

If, in addition, p(t2) > rsin (
the other hand, p(t2) < rsin

%), then the conditions of Lemma 4.4.2 apply at to. If, on
(%), then

2(R —r)sin (g) + p(to) < rsin (;)

i3
(o2
0 < p(to) < (3r — 2R)sin (2>
N8
2
gR <r<R,
ty <ty + L(2m —0), B(t3) = §, and

7 sin (;) < p(ts) = 2rsin (g) — p(t2) = (4r — 2R) sin (;) — p(to) < 2Rsin (;) :

If p(t3) < Rsin (§) then the conditions of Lemma 4.4.2 apply at t3, otherwise,

Rsin <;) < (4r — 2R) sin (;) — p(to)

4
0 < p(ty) < (4r — 3R) sin (;)
U
3
ZR <r<a=R.

Let t4, <t3+ %a be the moment when § = § and

p(t1) = 2Rsin (;) — p(t3) = (4R — 4r) sin (2) + p(to) < Rsin (;) .

If p(t4) > rsin (%) then the conditions of Lemma 4.4.2 apply at t4, otherwise,

0 < p(to) < (5r — 4R) sin (‘;) ,

88

and so forth and so on, until

k

<
TSt
(8

r

R—r

<k.

Choosing the minimal k, we arrive at k = {ﬁw, and tp < to + [%W T(@2m—o)+
k| R
EJ Vo]

Figure 4.5: Entering State a with 3 = § and p < rsin (§) transitions to State a with
p > rsin (%), via State b. An agent traveling form point Bj senses the beacon, located
at G, only when reaching point Bs.

Theorem 4.1 (UCSLSV). An agent with kinematics (2.1) with constant speed v which
switches its rotation rate according to its perception of a stationary beacon (4.1) located
at a distance of p(to) from the agent, reaches a circular orbit with w = 2 such that the

distance between the beacon and its center of rotation is not greater than rcos (§) in

less than
B p(to) + 2R 2mr + (R—r)o
T_<1+ 2(R—Or)sin(g)-‘>< v)
+ {R;TWZ(QW—U)—F W f + _Ttan<;>
time.

89

Proof If not starting with initial conditions such that the beacon is inside the r radius
circle the agent is traveling on, as illustrated in Figure 4.4, then the agent will reach
a configuration where § = ¢ in less than ¢ty = to + . (27 — o) + %0. After that time
the distance from the beacon must be less than p(t1) = p(t9) + 2R, and the system will

g

—3, as described in Lemma 4.4.1, until getting close enough

engage in cycles with 8 =

to the beacon at ts,

p(t1) = p(to) + 2R < 2n (R — r) sin (;’)

U
n— ’V p(to) + 2R -‘ .
2(R—r)sin (%) |’

tgzt1+n<2(27r—0)+fa>:to—i-(l—i-n)(

21r + (R — T)U) _
v)

at which time the system begins, at the latest, to follow the behavior described in

Lemma 4.4.3, until ¢3.

t3 =to + [R;TW Z (2r — o)+ [R;T-‘ EU + R- tan (g) ;
and finally,
T =t5—tg=1ty—to+ [R;_’”W %(2%—0)4— [R;_J + _rtan<;>

(il) ()
{RCJ EO’ + Ror tan (0>

v v
Q.E.D. (]

90

Chapter 5

AntAlate

AntAlate is a software framework for Unmanned Aerial Vehicle (UAV) autonomy, de-
signed to streamline and facilitate the work of application developers, particularly in
deployment of Multi-Agent Robotic Systems (MARS). We created AntAlate in order
to bring our research in the field of multi-agent systems from theoretical results to both
advanced simulations and to real-life demonstrations. Creating a framework capable of
catering to MARS applications requires support for distributed, decentralized, control
using local sensing, performed autonomously by groups of identical anonymous agents.
Though mainly interested in the emergent behavior of the system as a whole, we focused
on the single agent and created a framework suitable for a system of systems approach,
while minimizing the hardware requirements of the single agent. Global observers or
even a centralized control can be added on top of AntAlate, but the framework does
not require a global actor to finalize an application. The same applies to a human in
the loop, and fully autonomous UAV applications can be written in as straightforward
a way as can semi-autonomous applications. In this paper we describe the AntAlate

framework and demonstrate its utility and versatility.

5.1 Introduction

Unmanned mobile robotic platforms overcame barriers to reach an ever-growing user-
base in recent years. From the military to the civilian domain, from graduate school
laboratories to grade school classes, and from the highly specialized professional’s grasp
to the enthusiastic hobbyist’s reach, applications of unmanned ground, surface, under-
water and aerial vehicles have become widespread. The growing availability of low-
power-high-performance mini-computers and micro-controllers, as well as the level of
maturity and popularity reached by open-source software systems such as the Robot

Operating System (ROS'), ArduPilot?, and Dronekit?, have made this prevalence pos-

"https://www.ros.org/
2http://ardupilot.org/
Shttps://dronekit.io/

91

https://www.ros.org/
http://ardupilot.org/
https://dronekit.io/
https://www.ros.org/
http://ardupilot.org/
https://dronekit.io/

sible. In their survey, Lim et al.[LPLK12] explain and demonstrate how open-source
UAV projects can empower the UAV application developer; the emergence of reliable
software frameworks for UAV application development allows both professional and
hobbyist developers to focus their efforts on the distinctive features of their own ap-
plication while leaving the necessary yet onerous task of infrastructure development to

the framework maintainers.

Demeyer et al.[DMNS97] describe frameworks as ”semi-finished programs”; the ap-
plications being finalized by application developers that use the framework. The more
functionality the framework offers, the more constraints it imposes on the future ap-
plication developers. The framework designer must therefore resolve the conflicting
tension between cross-context reuse and ease of adoption and adaptation. To balance
the tension, Demeyer et al. offer guidelines to enhance three open system requirements:
Interoperability, or the ability to run on various configurations; Distribution, or the abil-
ity to reliably run over a set of physically distributed nodes; and Extensibility, or the
ability to finalize the application with added customization without having to change
any of the framework’s internal modules. One of the primary dilemmas encountered by
anyone trying to create a useful framework for multi-agent robotic systems (MARS) in-
corporating UAVs, is how much emphasis must be given to the particular UAV aspects
of the framework; another dilemma is how to incorporate the swarm enabling multi-
agent interaction mechanisms. Too much emphasis on UAV applications might leave
the framework unfit for other platforms such as ground vehicles, while not giving the
UAV platform enough consideration might leave the framework too high-level, requiring
extensive tailoring from the ultimate application developer. Balancing the emphasis on
swarm-enabling mechanisms is perhaps even more problematic, since any mechanism

built into the framework limits the use of alternatives by future applications.

Chamanbaz et al.[CMZ"17], for instance, recently created the Marabunta* frame-
work built for enabling swarming capabilities to general purpose robotic systems, and
demonstrated their framework’s capabilities in classic swarming scenarios for ground
and surface vehicles. Preferring interoperability over distribution and extensibility to
some extent, much of the implementation is left to the final application developer, and
the framework’s synchronous calls to abstract functions from a single-threaded main
loop per robot might become unfit for a UAV given a resource-demanding behavior. On
the other hand, Preiss et al.[PHSA17] described Crazyswarm?®, a framework for indoor
swarm applications using the Crazyflie® platform, and the highly popular ROS mid-
dleware, used in conjunction with a global object tracker such as VICON” for external
feedback. While Crazyswarm applications perform most of their in-flight computation

on-board the Crazyflie platform, a base station is required in order to calculate and

“https://github.com/david-mateo/marabunta
Shttps://github.com/USC-ACTLab/crazyswarm
Shttps://www.bitcraze.io/crazyflie-2-1

"https:/ /www.vicon.com

92

https://github.com/david-mateo/marabunta
https://github.com/USC-ACTLab/crazyswarm
https://www.bitcraze.io/crazyflie-2-1
https://www.vicon.com
https://github.com/david-mateo/marabunta
https://github.com/USC-ACTLab/crazyswarm
https://www.bitcraze.io/crazyflie-2-1
https://www.vicon.com

broadcast pose estimates and is therefore an integral part of the Crazyswarm system
architecture. Crazyswarm is therefore an example of a specialized framework willing
to sacrifice generality for performance, as demonstrated in an impressive video featur-
ing a swarm of 49 Crazyflies®. Arguably finding a middle ground between generality
and specialization, Sanchez-Lopez et al.[SLMB*17] presented Aerostack® - a framework
designed as a set of components organized in a multi-layered model. Ultimate applica-
tion developers can create their own application by selecting a set of components from
the Aerostack component library and modifying or adding additional components as
needed, as long as the developers adhere to the Aerostack conventions, thus satisfying
the extensibility framework requirement. The interoperability and distribution require-
ments are achieved inherently by using ROS as underlying middleware for the single
agent’s inter-process communication. Aerostack’s swarming capabilities are enabled
by the framework’s social layer interface contracts, yet the mechanics of inter-agent
communication is left for the application developer to finalize. A few examples of
swarming solutions embedded into frameworks can be seen in the Voltron (Mottola et
al. 2014]MMWG14]), Buzz (Pinciroli and Beltrame, 2016[PB16]), and CyPhyHouse!®’s
Koord (Ghosh et al. 2020[GJH"20]) programming languages. Though varying in im-
plementation details, the development framework provided by each of these languages
allows the ultimate application developer to write an application from a swarm (or a
sub-group of a swarm’s agents or super-group of sub-groups...) perspective with relative
ease; this is done by including an underlying mechanism that propagates coordinating
information between agents. Yet in applications where inter-agent communication is
not required or even possible, these strengths become irrelevant, and with an increased
number of agents the task of maintaining a distributed shared memory becomes a

problem rather than a remedy.

For the past 20 years, our research team at the Technion MARS laboratory'' has
been focusing on developing algorithms that address a variety of global tasks with
swarms of simple mobile agents. Our paradigm defines agents as anonymous (i.e. not
specifically addressable by an identifier), oblivious (have little or no memory), identi-
cal hardware platforms, that rely on locally acquired information provided by simple
sensors such as local pheromone level detectors [WLB96] [WLB99] [EB12a], proximity
sensors [GEBO8] [EB12b], or limited vision [BB17] [DB17] for their motion control de-
cisions. Our work during these years led us to develop several types of local interaction-
based motion rules for autonomous mobile agents in swarms deployed in various types
of environments that achieve global tasks such as patrolling an area, gathering into a
cohesive but flexible "cloud” of agents, coverage of regions for intruder detection, eq-

uitable distribution of workload, and path planning. See for example the works of our

Shttps://www.youtube.com/watch?v=D0CrjoYDt9w
https://github.com/VisiondUAV / Aerostack
https://cyphyhouse.github.io/index.html
"https://mars.cs.technion.ac.il/

93

https://github.com/Vision4UAV/Aerostack
https://cyphyhouse.github.io/index.html
https://mars.cs.technion.ac.il/
https://www.youtube.com/watch?v=D0CrjoYDt9w
https://github.com/Vision4UAV/Aerostack
https://cyphyhouse.github.io/index.html
https://mars.cs.technion.ac.il/

team members [WB97], [YWBO03], [FSAB06], [GEB08], [OYWBO08], [EB14], [EB16],
[BB17], [DB17], [APB18], [MB18], [AB19], [BDMB21], and [FB21]. We also addressed
the issue of achieving guidance and steering of cohesive mobile agent swarms using some
global "broadcast control” ideas, as presented in works by Segall and Bruckstein[SB16],
Dovrat and Bruckstein[DB17], and Barel et al.[BMB18]; where the broadcast signal is
often assumed to be acquired by only a random set of the swarm’s agents. These ideas
create a wealth of possibilities to deploy swarms of autonomous agents that can self-
organize into cohesive, adaptive, and flexible-shaped constellations. These swarms can
then be guided by a single user that communicates with the entire swarm via global
broadcast signals based on observing the swarm’s location, but without having precise
information on any particular agent of the swarm. It is easy to imagine the wealth
of applications such a system can address, from site surveillance to disaster relief to
space exploration. Yet the fundamental capabilities and limitations of swarms of such
agents are rather difficult to analyze theoretically, so novel mathematical approaches
are often needed to prove task accomplishment and termination, to evaluate the time
span necessary to do the work, and to assess the effects of random or byzantine failures
of agents. As examples of our team’s efforts we refer the reader to papers by Bruckstein
et al. [BCE91], [Bru93], [AB11], [OB12], [EB12b], [SB16], [BMB16], and [BDMB21].

We created AntAlate'? to deploy swarms of agents that perform our algorithms in
the real world. Considering its usefulness beyond implementing our algorithms, we
hereby offer the framework to the multi-agent robotics R&D community, to facilitate
the implementation of systems demonstrating various types of interesting swarming be-
haviors. AntAlate expresses our preference of UAV platforms, particularly copters, over
others, since copters can emulate the behavior of wheeled and fixed-winged platforms
to a greater extent than vice versa. AntAlate enforces an orderly execution of behaviors
by means of a mission control (MC) module which interfaces with the high-level control
(HLC) of the UAV and an operator module. Though we recommend a human at a con-
trol station as the operator, a centralized (or distributed) control server, or an on-board
node for fully autonomous applications will also do. We included an operator station
HTTP client (OSC) in the framework for all but the fully autonomous operator agents
to use, and an operator station server for inter-agent and human interface as a com-
plementary project'®. By design, the swarming mechanism in AntAlate is amorphous,
and can either emerge in a bottom-up fashion from the single agent’s behavior-set; be

determined top-down by an operator; or any mixture of these approaches.

The remainder of this paper provides an in-depth description of AntAlate in Section
5.2, followed by a comparison of workflows when implementing the same algorithm to
create ROS-based and AntAlate-based applications in Section 5.3, before concluding in
Section 5.4.

2https://gitlab.com/nemala/alate
Bhttps://gitlab.com/nemala/operator-station

94

https://gitlab.com/nemala/alate
https://gitlab.com/nemala/alate
https://gitlab.com/nemala/operator-station

5.2 Method

A good framework provides the final application developers a convenient trade-off be-
tween the freedom to write their own application and the constraints imposed by having
useful functionality they will find unnecessary to modify. Though any part of the code
in an open-source project can be edited, the parts which the framework authors deem
immutable can be considered as the framework’s core - developers are not required
to alter these sections in order to write their own application. Hence, the framework
core is generally where the benefits of using the framework present themselves. The
framework’s extendable parts should be well defined by framework contracts and mech-
anisms such as abstract classes that allow future developers to write modules that fit
into the framework without significant overhead. The degrees of freedom the frame-
work presents to the application developers can be thought of as a design space, where
the framework contracts represent the axes, and different applications with different

configurations can be represented by points in this space.

5.2.1 AntAlate Core

The core functionality of AntAlate is to coordinate between an operator, a set of pay-
loads, sensors and algorithms running onboard the UAV, and the UAV’s autopilot.
Figure 5.1 shows a diagram of AntAlate’s core components. Each component is a Ne-
MALA dispatcher'® node, communicating with other nodes by publishing messages to
topics other interested nodes subscribe to. NeMALA' is a set of supporting projects
for AntAlate, with core components for dispatching, publishing, and handling messages,
and tools'® to log and manage NeMALA dispatcher nodes and proxies. The dispatcher
nodes are implemented in C++, utilizing Boost'” and ZeroMQ'®, allowing nodes to
communicate locally via inter-process communication, or TCP/IP if distributed over
different computers. The ultimate application developers have control over the dis-
tribution of nodes, and can configure the method of communication between nodes by
setting up NeMALA prozies catering their own project’s architecture and requirements,
adding to the framework’s overall interoperability. AntAlate’s core components are the
Mission Control (MC, 5.2.1), High-Level Control (HLC, 5.2.1), Behavioral Module Ar-
biter (BMA, 5.2.1), and Operator Station Client (OSC, 5.2.1). Any future application
requires only components of these four types, and some applications could do with less.
Each of these components’ executables expect a NeMALA proxy name and a configura-
tion file path as arguments when run from the command line (except the BMA, which is
special in its requirement of its own node name instead of a proxy name). The configu-

ration file contains the node number used for each node, as well as the proxy endpoints

https://gitlab.com/nemala/core
https://gitlab.com/nemala
https://gitlab.com/nemala/tools
"https://www.boost.org/
Bhttps://zeromgq.org/

95

https://gitlab.com/nemala/core
https://gitlab.com/nemala/core
https://gitlab.com/nemala
https://gitlab.com/nemala/core
https://gitlab.com/nemala/tools
https://www.boost.org/
https://zeromq.org/
https://gitlab.com/nemala/tools
https://gitlab.com/nemala/core
https://gitlab.com/nemala
https://gitlab.com/nemala/tools
https://www.boost.org/
https://zeromq.org/

and topics used. Interoperability and distribution are therefore easily achieved by using
one or many proxies described in one or many configuration files, without the need to
alter code, recompile the application, or even edit configuration text-files, but only by
calling the core executables with different arguments instead. The configuration file is
also where behaviors, autopilots, and operator servers are specified, giving the ultimate

application developers control over the AntAlate design space.

MCM state
7

@ Mission Control g]

Behavior Module Arbiter g]

~

/ High Level Control g] 4© HLC state
velocity

O telemetry O platform errors
(4 (4

operator payload

O Operator Station Client @ N
O
O operator command
direction command
N

operator feedback Alate Agent API

Figure 5.1: AntAlate core components and their interfaces.

MC - Mission Control

The mission control component provides logic to coordinate all other AntAlate compo-
nents by maintaining a state machine, illustrated in figure 5.2, and publishing its state.
The state machine’s inputs are operator commands and the HLC component’s state
(see section 5.2.1); its output is the current mission state, which is provided as feedback
to the operator, is used to initiate HLC processes, and perhaps most importantly from
the framework point of view, governs the activation of sensors, payloads and algorithms
by the Behavior Module Arbiter (BMA) component (see section 5.2.1).

Upon initialization, the mission control synchronizes with the HLC component’s
state machine and transitions itself to standby. An operator command to takeoff tran-
sitions the state machine to the autonomous states of taking off, performing a mission,
returning to the launch site, and landing. A manual override initiated by a human pilot
changes the HLC’s state to manual, causing a transition in the mission control state
as well. The mission control can then return to standby only after the HLC returns
to its ready state, meaning the UAV’s motors are disabled. If at any point the HLC
reports that it is in its error state due to the autopilot shutting down, the mission state

machine transitions to an unrecoverable error state.

96

HLC - High-Level Control

The HLC component is an abstraction of the UAV platform. The HLC subscribes to
the MC state topic and a velocity command topic, and publishes its state, telemetry
and error data. The HLC state is decided by a state machine, illustrated in figure 5.3,
which coordinates the UAV autopilot abstraction with the MC state (see section 5.2.1).

When both autopilot and MC are up, the HLC enters its ready state. The HLC
responds to a MC transition to its taking off state by a making an attempt to arm the
UAV’s motors while transitioning to the takeoff state. Failure to arm the motors brings
the HLC state back to ready; success brings about a transition to gaining altitude,
where the autopilot attempts to gain enough altitude to be considered airborne before
running out of time and being forced to land by a transition to the landing state. While
airborne, an MC transition to its landing or return to launch states causes the HLC
to follow suit. A manual override is possible in any of the autonomous states. After
landing and disarming the motors, the HLC returns to ready mode from either manual
or autonomous states. If at any point the HLC loses communication with its autopilot,
the state machine transitions to the unrecoverable state LLC down to inform the MC

and Operator that the vehicle is about to crash. Low battery transitions the state

No Error HLC State / LLC Down Error

HLC State / Ready

machine to a low battery state.

HLC State / Waiting for MC Init
HLC State / Init

HLC State / Ready Standby

HLC State / Ready

Operator Command / Takeoff

Autonomous
N HLC State / Landing "
Landmg HLC State / Low Battery Taklng Off
Operator Command / Land
Operator Command / RTL —
Operator Command / Land HLC State / Airborne

Return to Launch Operator Command / RTL Mission
HLC State / Low Battery

HLC State / Manual

Figure 5.2: Mission Control State Machine.

97

BMA - Behavior Module Arbiter

The Behavior Module Arbiter activates behavior-sets according to a state topic it sub-
scribes to. Multiple BMAs can be cascaded such that the root BMA subscribes to the
MC state, and publishes its own arbitrary state for other BMAs to subscribe to. The
BMA gives AntAlate an added degree of freedom in the distribution of behaviors over
separate nodes, as well as being key to AntAlate’s extensibility by activating plugin
behaviors (see section 5.2.2). The configuration file given as an argument to the BMA

executable tells the node which behavior set to run, and which proxies to subscribe to.

Autopilot / Shutdown

Autopilot / Low Battery Autopilot / Shutdown

Autopilot / Low Battery

MC State / Init

Wating for LLC

Autopilot / Ready to Takeoff

Autopilot / Ready to Takeoff

Waiting For MC

MC State / Init

Timeout Timeout

Timeout MC State / Taking Off

Takeoff

Autopilot / Armed

Autopilot / Disarmed

Autopilot / Disarmed

Autonomous

MC State / Landin Gaining Altitude
Timeout Autopilot / Manual Override

MC State / Landing

Landing Manual

Autopilot / Takeoff

Return to Launch Airborne
MC State / Return to Launch

Figure 5.3: High-Level Control State Machine.

98

OSC - Operator Station Client

AntAlate requires an operator node to publish commands such as takeoff or land to
the operator command topic. For example, a minimal operator node could be a BMA
which publishes a takeoff command to the operator command topic every time the MC
enters its standby state, as can be seen in Figure 5.4. Yet, in order to facilitate inter-
agent, human-agent or human-swarm communication, we added an Operator Station
Client that serves as an anonymous client to a server via HT'TP, as can be seen in
Figure 5.1. The OSC accepts tokens from the server, so anonymous protocols can
stay anonymous, but any protocol requiring agents to be labeled is also supported.
The OSC subscribes to the MC and HLC topics and forwards the messages to the
server. The server replies with an operator command or a direction command if one
was recently given, and the OSC publishes the commands received to their appropriate
topics. In addition, outgoing operator payload and incoming feedback topics are left for
the final application developers to use as they see fit. The server IP address and port
are specified in the application’s configuration file, which the OSC reads at runtime

while setting up the node.

MCM state
s

Behavior Module Arbiter @ Mission Control @

velocity

: High Level Control @

£ telemetry £ platform errors

Figure 5.4: AntAlate minimal deployment.

HLC state

O

operator command

5.2.2 AntAlate Design Space

Swarming protocols generally differ not only in the way their agents behave, but also
in the way their agents sense the environment and communicate among themselves or
with an external operator. UAV systems usually differ in type of flying platform and
the autopilot providing low-level control over the flying platform. The AntAlate design
space therefore is composed of three major axes: Behavior (5.2.2), Autopilot (5.2.2),
and Communication (5.2.2, with Sensing split in implementation between these major

axes.

99

Behaviors

We created AntAlate in order to easily implement and test new swarming behaviors
on UAVs; during the design process, though, we found that there are other uses for
the behavior mechanism other than swarming protocols, such as single-UAV autonomy,
payload management, and sensing. Ultimately, the behavior mechanism can be used
as a building block to create almost any type of UAV application.

Figure 5.5 shows the reusable design in the form of a class diagram; a BMA node
is a NeMALA dispatcher that has a McStateMessageHandler which handles incoming
McStateMessage type messages that arrive via a topic the BMA registers to. These mes-
sages encapsulate an instance of an enumeration type that represents a mission-state.
The handler has an Arbiter which maps mission states with concrete behavior classes,
and activates or deactivates its behaviors accordingly whenever a message containing

a recognized state is received.

NeMALA::Dispatcher NeMALA::MessagePropertyTree

NeMALA::Handler McStateMessage
- m_eState:McStateEnum

T
|
|
- |
|
|

BMA::McStateMessageHandler \V

<<enumeration>>

McStateEnum

None

Init

Standby

Takingoff
PerformingMission
Landing

| Manual
ReturnToLaunch
NoError

" Error

BMA ::Behavior

BMA:: Arbiter

+ activate()
+ deactivate()

Figure 5.5: AntAlate’s Behavior Module Arbiter class diagram. The behavior abstract
class is a framework contract.

100

Using a plugin mechanism to populate arbiters with behaviors, the BMA generically
controls the activation of behaviors while leaving the behavior specifics to future pro-
grammers. Behavior interaction is made easy by adding topics to publish and subscribe
to, and BMAs can be cascaded by having behaviors publish mission-state messages to
designated topics other than that of the original MC. To create a new behavior, one
must create a shared library containing a class derived from the behavior abstract
class and a concrete factory class to which the BMA delegates the construction and
configuration of the behavior, along with its integration into the BMA node.

To add a behavior to an application, all that is required is that the application’s
configuration file includes an entry for that behavior, including which mission states
activate and deactivate the behavior, the plugin library name, and to which topics the
behavior subscribes and publishes to. No need to recompile the framework to change

the configuration, even when adding new behaviors.

Autopilots

Autopilots, in this discussion’s scope, are the hardware/software components that serve
as an intermediate between the the actual UAV platform and AntAlate logic, including
behaviors, operators and the mission control. The HLC and its autopilot class diagram
are shown in Figure 5.6. AntAlate’s modular design allows the extension through
inheritance of the autopilot interface class to fit to a specific UAV API. The HLC’s
concrete autopilot class implements a Python-C++4 bridge to facilitate the integration
of python based APIs such as Dronekit'? and Tello*®. By using a bridge we can extend
the concrete autopilot class without recompiling the AntAlate code-base; additional
autopilot APIs can be covered by the same concrete autopilot class by adding Python
implementations and updating a factory python script. Ultimate application developers
can then choose which autopilot API to use by altering the application’s configuration
file.

Communication

The OSC (Section 5.2.1) provides some degree of freedom to the design space by means
of the operator payload and feedback topics, yet imposes a specific HT'TP request and
expects the server’s reply to be formatted in a specific way. We deliberately excluded a
server from the framework to emphasize that the server we produced®' only represents
one example out of infinite possibilities. We encourage future application developers
to use the OSC without alteration, and to write their own server, tailored for their

application’s behaviors, users, and use cases.

9https://dronekit.io/
2Ohttps://github.com/dji-sdk/Tello-Python
Z'https://gitlab.com/nemala/operator-station

101

https://dronekit.io/
https://github.com/dji-sdk/Tello-Python
https://gitlab.com/nemala/operator-station
https://dronekit.io/
https://github.com/dji-sdk/Tello-Python
https://gitlab.com/nemala/operator-station

Though we find it useful, the OSC is not the only extra-agent channel of commu-
nication allowed in AntAlate, and is indeed not even the only form of operator that
falls into the constraints of the framework. Other operators can be implemented using
the behavior mechanism, and other communication methods can be added as behaviors
as well. In this context, inter-agent communication can be regarded as an AntAlate
behavior, with a BMA node using any type of hardware/software communication stack,
protocol, etc. NeMALA proxies, topics and messages can be used as well as general

building blocks for future applications.

5.3 Results

We used AntAlate to implement a swarming algorithm we previously described and
implemented using ROS?? and TurtleBot2?® platforms [DB17]. In this section, we
will present our workflow using AntAlate and compare it with our ROS workflow,
which may be familiar to most readers. We usually start our workflow with NetLogo®*
[Wil99] simulations to help refine our algorithms and to quickly make observations to
base our theoretical hypotheses on. Figure 5.7 shows a NetLogo simulation of our

algorithm® where a swarm of five agents are manipulated by the user taking over

Zhttps://www.ros.org/

Zhttps:/ /www.turtlebot.com/turtlebot2/

Zttp:/ /ccl.northwestern.edu/netlogo/
Zhttp://ccl.northwestern.edu/netlogo/models/community/dovrat2017

VelocityMessage
- m_dX:double
- m_dY:double
- m_dZ:double
- m_dYaw:double
- m_dPitch:double

McStateMessage

- m_dRoll:double
- m_eState:McStateEnum
N . :
I
HLC::VelocityM Handler| . !
I | e <<enumeration>>
i ! . \V HicStateEnum
HLC::McStateM ‘Handler
1 1 McStateEnum None
! ! Init
None WaitingForMc
Tnit WaitingForLlc
2 Standby Ready
HLC::StateMachine Takingoff Takeoff
PerformingMission GainingAltitude
\\\ Landing Airborne
<<interface>> N Manual Landing
HLC::iAutoPilot N ReturnToLaunch Manual
\ NoError RTL
+ gelReadyForTakeoff() . o Nisfioars
W Lal() \ LowBattery
+ Takeoff() \ LicD
+ Land() \ _ CHIOWIL
+ ReturnToLaunch() N T
+ SetVelocityBodyFrame(dForward:double, dRight:double, dDown:double) -
+ SetYawRate(dDegPerSec:double) HicStateMessage
+ GetTakeoffAltitude():double - m_eState:HlcStateEnum

9
HLC::AutoPilot

!

L

[NeMALA::Publisher
2[1
L 1

Figure 5.6: AntAlate’s High Level Control class diagram. The iAutoPilot interface is
a framework contract, the concrete autopilot is a Python-C++ bridge.

102

https://www.ros.org/
https://www.turtlebot.com/turtlebot2/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/community/dovrat2017
http://ccl.northwestern.edu/netlogo/models/community/dovrat2017
https://www.ros.org/
https://www.turtlebot.com/turtlebot2/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/community/dovrat2017

(drag-and-dropping) one of them.

A B ¢ D

Figure 5.7: Our algorithm implemented with NetLogo. Five agents are initially dis-
persed at random on the plane (A). The agents gather to a rotating regular pentagon
(B). Dragging one of the agents to the bottom left corner of the arena, the rest of the
agents follow and ultimately form a rotating square about the ”dragged leader” (C).
"Releasing” the leader, it returns to the swarm, and again a rotating pentagon forms,
at the new location (D).

Once satisfied with the results, we can choose a suitable mobile platform and design
our application. Our swarming algorithm is fairly simple: every agent either detects
other agents in its field of view and turns gently to one direction, or does not detect
other agents and turns sharply to the same direction. In other words, the algorithm’s
input is a boolean valued true if other agents are detected or false otherwise, while the
algorithm’s output is a real value representing angular velocity, which switches between
two predefined values according to the input.

The TurtleBot2 platform is perfectly suited for handling this algorithm, and the
next step is to see which interfaces fit our algorithm’s needs. Figure 5.8 shows the ROS

graph of our application®s

. To detect other agents, we created a counter node which
counts the number of magenta colored poles in an image frame and publishes the result.
Figure 5.9, taken from this short video?”, shows our robots fitted with clearly visible
colored rods, following a hand-held rod which acts as a leader, similar to the simulated
behavior shown in Figure 5.7. Capitalizing on the TurtleBot2 capabilities, we added
a detector node which reports if the agent has bumped into something or if its laser
scanner has detected an obstacle nearby. The controller node translates the detected
rod count to "false if zero, true otherwise”, and executes our algorithm along with an
overriding obstacle avoidance procedure if necessary. The controller then publishes a
message with the correct forward velocity and turning rate to the relevant topic the
robot’s velocity command multiplexer subscribes to.

Our process using AntAlate was similar, and we included the swarm algorithm,
as well as a video capture behavior, as a template application in the AntAlate code
repository. Figure 5.10 shows the template application’s deployment diagram, where

each of the two behaviors gets its own BMA node. The swarm algorithm’s BMA

Z6https://gitlab.com/dave.dovrat /turtle bale
Thttps:/ /www.youtube.com /watch?v=0A4ri3X4izw

103

https://gitlab.com/dave.dovrat/turtle_bale
https://www.youtube.com/watch?v=OA4ri3X4izw
https://gitlab.com/dave.dovrat/turtle_bale
https://www.youtube.com/watch?v=OA4ri3X4izw

subscribes to the direction command, telemetry, and operator payload topics from
which it derives the direction the operator wants the swarm to move towards, the
azimuth the agent is moving towards, and the existence of peer agents in a sector in
front of the agent, respectively. The algorithm BMA’s output is a velocity command
which the HL.C subscribes to, and which incorporates the operator’s direction command

with the swarm algorithm’s output. The video capture behavior uses the command line

master

zeroconf

Izeroconf/zeroconf

capabliity_server_nodelet_manager

Icapability_server_nodelet_manager

capability_server

kapablilty_server/bondS* T Jcapablllty_server Y jrapabllkty_server/events
app_manager ‘turtlebot Interactions
e :
Japp_manager
| —
emd_vel_mux
*md_vel_muxllnpumeleo]‘;
moblle_base
oot sesevrsne

yle:ﬁse_n delet_manager

l+obile_base_nodele&_manager/bo i@ mobile_base_nodelet_manager 5| | #roblle_base/sensors/co
-~ I

?Cobue_ y

bumper2pointcloud

/bumper2polntcloud

robot_state_publisher

Jrobot,_state_publisher

dlagnostic_aggregator

Idlagnostic_aggregator
turtle_bale

Murtiebot: laptop_battery i i
:laptop_|
’—‘//\ G irtle_bale/colllslon_detection_laser il
e o Bt
——]
e, detection_bump

turtlebot_laptop_battery

: to_laserscan

[|
i 1_nodelet i furtle_bale/colleague_count

Iramera/rgbjcamera_inf

Jcamera/depth_metric
Jcamera/depth_rectify_depth
Jcamera/depth_polnts.

)_nodelet_manager

counter

Ichmera/depth_reglstered/camera_Irfd

¢amera/rgb/image_rect_coldr

amera/rgb/image_colo

I

Icamerajregister_depth_rgb

Figure 5.8: Our Turtlebot application’s ROS graph. The application topics and nodes
written by us are highlighted, while the rest of the graph was made available to us by
the ROS community.

104

tool ffmpeg®®, which requires separate installation on the target machine, to capture
video from a device specified in the application’s configuration file; it neither subscribes
nor publishes to any topic. Both BMAs subscribe to the MC state topic in order to
activate their behaviors when appropriate.

AntAlate’s modular and configurable design makes it fit for deployment using con-
tainers; we created docker?® images for each AntAlate component type (MC, HLC,
OSC, BMA), for linux/arm and linux/amd64 architectures, as well as two BMA im-
ages with pre-built behaviors, one for the swarm algorithm and one for the video capture
behavior. We made these images publicly available on Docker Hub. With these docker

images we deployed the same code to three different configurations: A simulation that

Zhttps://Fmpeg.org/
https://www.docker.com/
30https://hub.docker.com/u/nemala

Figure 5.9: Our algorithm implemented with TurtleBots and ROS. The agents gather
to a formation resembling a rotating square (A). The agents follow a human leader (B).
When the leader goes away, the agents eventually return to their previous formation
at a new location (C).

Behavior Module Arbiter @

@ /LCM state @
Behavior Module Arbiter C\ Mission Control

L

N
Velg% High Level Control @ 4<> HLC state

|
o

telemetry @ platform errors

operator payload

Va . .
@ Operator Station Client @ @
/
operator command
O "
direction command
M
J

operator feedback Alate Agent API

Figure 5.10: AntAlate template application deployment.

105

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

https://ffmpeg.org/
https://www.docker.com/
https://hub.docker.com/u/nemala
https://ffmpeg.org/
https://www.docker.com/
https://hub.docker.com/u/nemala

uses an external SITL ArduCopter3' simulator as an autopilot and communicates with
it via tcp; a 470mm UAV frame with a pizhawk3? autopilot and a Raspberry Pi*? on-
board that runs AntAlate and communicates with the pixhawk through a mavlink3*
serial connection; and a Tello*® with a companion Raspberry Pi that communicates
with the autopilot via wifi using the Tello API. Figures 5.11, 5.12, and 5.13 are taken
from a short video®® featuring these configurations. From a design-space point of view,
the first two configurations use the same Dronekit3” autopilot, though on a different
computer architecture, and the last two use the same computer architecture but with
two different autopilots. The simulation, having no video devices, doesn’t run a video
capture BMA. We chose to run the template application’s behaviors on separate nodes,
but one BMA node would have sufficed.

Control the Swarm

LI} Actions
|

Azimuth: O

| = Sy
Client Time Stamp: 2020-11-26 13:43:07.087228 e -~ 3 & U @
Server Reception Time: 2020-11-26 13:43:07.000257 § :

Map Satellite

Reset Agent Table |

Latitude: -35.363257
Longitude: 149.1652732
Altitude: 9.812

Azimuth: -0.144271582365036

Armed: True
Battery Voltage: 12242
GPS Fix: 6

GPS HDOP: 1210
Mode: GUIDED

Low Level Control Message: CRITICAL:autopilot:PreArm: Need 3D Fix

Low Level Control State: ACTIVE

High Level Control State:
lission e: ission

© 2018 David Dovrat - IIT License

Figure 5.11: AntAlate template application demonstrated using ArduCopter’s Software
in The Loop (SITL) simulator. Screen capture from the AntAlate Server Graphical User
Interface (GUI).

The template application’s algorithm requires the detection of other agents as an
input, yet the simulated agents have no camera or sensing device capable of detecting
other agents, so we compensated for the missing ability by using a tailored server
along with the OSC. The OSC’s HTTP post request includes the HLC state which

in turn includes the agent’s location and orientation. When a new agent posts its

31https:/ /ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
32https://pixhawk.org/

33https://www.raspberrypi.org/

3 https://mavlink.io/

3 https://www.ryzerobotics.com/tello

36https://youtu.be/i9%kctTILk Tg

3Thttps:/ /dronekit.io/

106

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://pixhawk.org/
https://www.raspberrypi.org/
https://mavlink.io/
https://www.ryzerobotics.com/tello
https://youtu.be/i9kctIlLkTg
https://dronekit.io/
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://pixhawk.org/
https://www.raspberrypi.org/
https://mavlink.io/
https://www.ryzerobotics.com/tello
https://youtu.be/i9kctIlLkTg
https://dronekit.io/

38

state for the first time, our server®® assigns an index to it for further updates. The

server keeps a data base, and each time an agent updates the server with its state, the

3¥https://gitlab.com/nemala/operator-station

Figure 5.12: AntAlate template application demonstrated with 470mm quadcopters.
Frames captured by the video capture behavior are presented in the upper corners.

smm———ERA |11

W

Figure 5.13: AntAlate template application demonstrated with Tello platforms. The
upper part of the figure shows frames from the video capture behavior of four of the
agents.

107

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

https://gitlab.com/nemala/operator-station
https://gitlab.com/nemala/operator-station

server records the state and solves the inverse geodesic problem using geographiclib>

to answer whether another agent is in the sector in front of the updating agent in
the HTTP reply’s payload field. The detection range and field of view are server
parameters. The OSC parses the HT'TP reply to publish to the AntAlate operator
command and direction command topics if necessary, and forwards the payload to the
AntAlate operator payload topic. The BMA running the swarm algorithm subscribes to
the payload topic and receives the server-calculated response as its required detection
input. Had there been a peer detecting sensor, a BMA encapsulating that sensor
would have published to some peer-detection topic, the swarming algorithm would
have subscribed to that topic instead of the operator payload topic, and the server’s
database would have been unessential to the application. Which topic the component
subscribes to is detailed in the configuration file given as input to AntAlate components.

Though the resulting applications are very different, the first being a ground robot
that can avoid and handle bumping into obstacles, and the second an aerial robot
that accepts broadcast signals, the workflow was almost identical: come up with an
algorithm, build a process that uses available interfaces to encapsulate the algorithm,
refine the resulting process to take advantage of available assets and compensate for
missing assets, simulate, test, and deploy.

Looking at the amount of bytes in manually written files as an indicator of human
effort, both workflows are comparable. The ROS application weighs 13,191 bytes not
including the counter and collision detection nodes, and 23,638 bytes including them.
the AntAlate application’s behavior plugin code and configuration files weigh 18,118
bytes. This example showcases the power of a good framework - a few hundred lines of
custom application code utilize thousands of lines of framework code. With AntAlate,
we use the same nodes over and over; we code a new behavior once and configure it, as
well as combine it with other behaviors, to form new applications without going over
the entire design process for each added behavior. The application design is mostly
implemented in the framework up until the point of concrete behaviors, which are
left for the custom application developers to program and deploy according to their

application’s requirements and constraints.

5.4 Discussion

This paper introduces and describes AntAlate, a software framework we created for
the future development of UAV MARS applications. AntAlate is a manifestation of
our multi-agent systems paradigm; we chose a system of systems approach and focused
on the single agent, while avoiding constraints on the swarming mechanism, expressing
our preference for local over global sensing and communication, anonymity and oblivi-

ousness over distributed and shared memory, decentralized autonomy over centralized

39https://geographiclib.sourceforge.io/html/python /index.html

108

https://geographiclib.sourceforge.io/html/python/index.html
https://geographiclib.sourceforge.io/html/python/index.html

control. We incorporated an operator entity as a means of inter-agent and agent-human
communication in an effort to keep the framework useful for MARS applications outside
the scope of our paradigm notwithstanding.

We identified the UAV-MARS design-space and enforced framework contracts that
promote maintainable future extensions. We employed proxies with configurable end-
points to enable the physical distribution of AntAlate nodes, and created a modular,
interoperable, architecture which allows future developers to code once and deploy the
same code on many different platforms and simulators, as we demonstrated with an
example application.

Future framework enhancements include general types of operators that bridge be-
tween underlying frameworks and communication modals, in addition to the existing
HTTP client. An example of such an operator could be a ROS node operator that
exposes and forwards the AntAlate topics to ROS topics and vice versa, allowing the
AntAlate agent to integrate into ROS applications. In addition, the development of
some useful behaviors, such as peer recognition, obstacle avoidance, and simultaneous
localization and mapping, could prove useful for developers interested in using these
behaviors as building blocks in their own application without having to re-implement
the wheel. Integrating a wider range of autopilots into the framework is another devel-
opment priority, with the Crazyflie API*? at the top of the autopilot backlog.

We hope the multi-agent robotics community will find AntAlate useful, and that
AntAlate becomes the framework of choice for easy implementation of many interesting

swarming behaviors, as well as an instrument for future collaborations and discussions.

AOhttps://github.com /bitcraze/crazyflie-lib-python

109

https://github.com/bitcraze/crazyflie-lib-python
https://github.com/bitcraze/crazyflie-lib-python

110

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Chapter 6

Discussion and Conclusion

This thesis discusses two frameworks; we solved the PCBOUP and UCSLSV problems,
and flew a swarm of UAVs running applications of the multi-agent version of UCSLSV,
but this thesis is more about how we solved these problems than about the actual
solutions.

The fact that the automaton generating algorithm from Chapter 2 is the under-
lying process that abstracted away the otherwise unsolved, perhaps even unsolvable,
nonlinear differential equations that describe the agent’s trajectories and behavior in
both PCBOUP and UCSLSV, is evidence to the main contribution of this work being
the underlying algorithm rather than the solutions generated with it.

The same goes for the AntAlate application demonstrated in Section 5.3. Writing
AntAlate required a great amount of effort, an effort we could have directed into creat-
ing perhaps dozens of stand-alone UAV applications. Yet now that AntAlate exists, the
reduced overhead allows for the same amount of effort, previously required to create
dozens of stand-alone UAV applications, to create hundreds of AntAlate applications.
Will the investment pay off? That depends on the amount of applications that will
be written with AntAlate in the future, on the collaborations that will be established
due to using AntAlate as a medium, and to the general adoption of AntAlate by the
robotics community.

As for the automata theory method for the analysis of unicycle pursuit problems, the
investment in infrastructure has already payed off; the PCBOUP problem came up while
we were trying to solve the multi-agent UCSLSV problem, and wanted to use PCBOUP
as a stepping stone towards the multi-agent goal, only to find that this specific variation
of the pursuit problem was yet unsolved. Now, having not only solved PCBOUP, but
also creating Algorithm 2.1 in the process, we have a clear road-map towards solving
the multi-agent UCSLSV, as well as tracking and capture of differently moving targets

with agents using different control strategies and utilizing various sensing capabilities.

111

112

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

Bibliography

[AB11]

[AB19]

[APBI18]

[BBO4]

[BB17]

[BBROG]

[BCE91]

[BDMB21]

[Bee95]

Yaniv Altshuler and Alfred M. Bruckstein. Static and expanding grid cov-
erage with ant robots: Complexity results. Theoretical Computer Science,
412(35):4661-4674, 2011.

Michael Amir and Alfred M. Bruckstein. Probabilistic pursuits on graphs.
Theoretical Computer Science, 795:459-477, 2019.

Yaniv Altshuler, Alex Pentland, and Alfred M. Bruckstein. Cooperative
Swarm Cleaning of Stationary Domains, chapter 2, pages 15-49. Springer
International Publishing, 2018.

F. Belkhouche and B. Belkhouche. On the tracking and interception of
a moving object by a wheeled mobile robot. In IEEE Conference on

Robotics, Automation and Mechatronics, 2004., volume 1, pages 130-135
vol.1, 2004.

Levi Itzhak Bellaiche and Alfred Bruckstein. Continuous time gathering
of agents with limited visibility and bearing-only sensing. Swarm Intelli-
gence, 11(3):271-293, 2017.

F. Belkhouche, B. Belkhouche, and P. Rastgoufard. Line of sight robot
navigation toward a moving goal. ITEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 36(2):255-267, 2006.

AM Bruckstein, N Cohen, and A Efrat. Ants, crickets, and frogs
in cyclic pursuit. techreport CIS9105, Computer Science Depart-

ment, Technion, http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
info.cgi/1991/CIS/CIS9105, May 1991.

Ariel Barel, Thomas Dages, Rotem Manor, and Alfred M Bruckstein.
Probabilistic gathering of agents with simple sensors. SIAM Journal on
Applied Mathematics, 81(2):620-640, 2021.

Randall D. Beer. A dynamical systems perspective on agent-environment
interaction. Artificial Intelligence, 72(1):173-215, 1995.

113

[BMB16]

[BMBI18]

[Bru93|

[CMZ+17]

[DB17]

[DLN21]

[DMNS97]

[EB12a]

[EB12b]

[EB14]

[EB16]

Ariel Barel, Rotem Manor, and Alfred M. Bruckstein. Come

together: Multi-agent — geometric consensus (gathering, ren-
dezvous, clustering, aggregation). techreport CIS-2016-03,
Technion, http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-

info.cgi/2016/CIS/CIS-2016-03, March 2016.

Ariel Barel, Rotem Manor, and Alfred M. Bruckstein. On steering swarms.
In Marco Dorigo, Mauro Birattari, Christian Blum, Anders L. Chris-
tensen, Andreagiovanni Reina, and Vito Trianni, editors, Swarm Intel-

ligence, pages 403—410, Cham, 2018. Springer International Publishing.

Alfred M Bruckstein. Why the ant trails look so straight and nice. The
Mathematical Intelligencer, 15(2):59-62, 1993.

Mohammadreza Chamanbaz, David Mateo, Brandon M. Zoss, Grgur
Toki¢, Erik Wilhelm, Roland Bouffanais, and Dick K. P. Yue. Swarm-
enabling technology for multi-robot systems. Frontiers in Robotics and
Al 4:12, 2017.

D. Dovrat and A. M. Bruckstein. On gathering and control of unicy-
cle a(ge)nts with crude sensing capabilities. IEEE Intelligent Systems,
32(6):40-46, November 2017.

Rollen S D’Souza, Robbert Louwers, and Christopher Nielsen. Piecewise
linear path following for a unicycle using transverse feedback linearization.

IEEE Transactions on Control Systems Technology, 2021.

Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz, and Patrick Steyaert.
Design guidelines for ’tailorable frameworks’. Communications of the
ACM, 40(10):60-64, 1997.

Yotam Elor and Alfred M Bruckstein. Multi-a (ge) nt graph patrolling and
partitioning. In Science: Image In Action, pages 18-33. World Scientific,
2012.

Yotam Elor and Alfred M. Bruckstein. A “thermodynamic” approach
to multi-robot cooperative localization. Theoretical Computer Science,
457:59-75, 2012.

Yotam Elor and Alfred M. Bruckstein. “Robot Cloud” gradient climb-
ing with point measurements. Theoretical Computer Science, 547:90-103,
2014.

Gidi Elazar and Alfred M. Bruckstein. Antpap: Patrolling

and fair partitioning of graphs by a(ge)nts leaving pheromone

114

[ET 16]

[FB21]

[FSABO6]

[GEBOS]

[GIJHT20]

[GlaT75]

[JTWS19]

[LaS60]

[Lib03]

[LPLK12]

traces. techreport CIS-2016-04, Computer Science Department,
Technion, http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
info.cgi/2016/CIS/CIS-2016-04, April 2016.

Koray S. Erer, Raziye Tekin, and M. Kemal Ozgoren. Biased proportional
navigation with exponentially decaying error for impact angle control and
path following. In 2016 24th Mediterranean Conference on Control and
Automation (MED), pages 238-243, June 2016.

Roee M. Francos and Alfred M. Bruckstein. Search for smart evaders with

sweeping agents. Robotica, FirstView:1-36, April 2021.

Ariel Felner, Yaron Shoshani, Yaniv Altshuler, and Alfred M Bruckstein.
Multi-agent physical a* with large pheromones. Autonomous Agents and
Multi-Agent Systems, 12(1):3-34, 2006.

Noam Gordon, Yotam Elor, and Alfred M. Bruckstein. Gathering multiple
robotic agents with crude distance sensing capabilities. In Marco Dorigo,
Mauro Birattari, Christian Blum, Maurice Clerc, Thomas Stiitzle, and
Alan F. T. Winfield, editors, Ant Colony Optimization and Swarm Intelli-
gence, pages 72-83, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

R. Ghosh, J. P. Jansch-Porto, C. Hsieh, A. Gosse, M. Jiang, H. Taylor,
P. Du, S. Mitra, and G. Dullerud. Cyphyhouse: A programming, simu-
lation, and deployment toolchain for heterogeneous distributed coordina-
tion. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 6654-6660, 2020.

Leon Glass. Classification of biological networks by their qualitative dy-
namics. Journal of Theoretical Biology, 54(1):85-107, 1975.

Bhargav Jha, Ronny Tsalik, Martin Weiss, and Tal Shima. Cooperative
guidance and collision avoidance for multiple pursuers. Journal of Guid-
ance, Control, and Dynamics, 42(7):1506-1518, 2019.

J. LaSalle. Some extensions of Liapunov’s second method. IRE Transac-
tions on Circuit Theory, 7(4):520-527, 1960.

Daniel Liberzon. Switching in systems and control. Springer Science &
Business Media, 2003.

H. Lim, J. Park, D. Lee, and H. J. Kim. Build your own quadrotor: Open-
source projects on unmanned aerial vehicles. IEEE Robotics Automation
Magazine, 19(3):33-45, Sep. 2012.

115

[MB18]

[MG10]

[MMWG14]

[Mo0090]

[Nah07]

[OAE16]

[OB12]

[OYWBO0S]

[PB16]

[PHSA17]

[REHGS15]

Rotem Manor and Alfred M. Bruckstein. Chase Your Farthest Neighbour,
volume 6, chapter 2, pages 103-116. Springer International Publishing,
Cham, 2018.

Eran D. B. Medagoda and Peter W. Gibbens. Synthetic-waypoint guid-
ance algorithm for following a desired flight trajectory. Journal of Guid-
ance, Control, and Dynamics, 33(2):601-606, 2010.

Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi.
Team-level programming of drone sensor networks. In Proceedings of the
12th ACM Conference on Embedded Network Sensor Systems, pages 177—
190, 2014.

Cristopher Moore. Unpredictability and undecidability in dynamical sys-
tems. Phys. Rev. Lett., 64:2354-2357, May 1990.

P.J. Nahin. Chases and escapes: The mathematics of pursuit and evasion.

Princeton University Press, Princeton, New Jersey, 2007.

Tiago Oliveira, A. Pedro Aguiar, and Pedro Encarnagdo. Moving path fol-
lowing for unmanned aerial vehicles with applications to single and multi-
ple target tracking problems. IEEE Transactions on Robotics, 32(5):1062—
1078, 2016.

Frédérique Oggier and Alfred Bruckstein. On Cyclic and Nearly Cyclic
Multiagent Interactions in the Plane, volume 218, chapter 1, pages 513—
539. Springer Basel, Basel, 2012.

Eliyahu Osherovich, Vladimir Yanovki, Israel A. Wagner, and Alfred M.
Bruckstein. Robust and efficient covering of unknown continuous domains
with simple, ant-like a(ge)nts. The International Journal of Robotics Re-
search, 27(7):815-831, 2008.

C. Pinciroli and G. Beltrame. Swarm-oriented programming of distributed
robot networks. Computer, 49(12):32-41, 2016.

James A. Preiss, Wolfgang Honig, Gaurav S. Sukhatme, and Nora Aya-
nian. Crazyswarm: A large nano-quadcopter swarm. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3299-3304.
IEEE, 2017. Software available at https://github.com/USC-ACTLab/

crazyswarm.

Ashwini Ratnoo, Shmuel Y. Hayoun, Asaf Granot, and Tal Shima. Path
following using trajectory shaping guidance. Journal of Guidance, Control,
and Dynamics, 38(1):106-116, 2015.

116

https://github.com/USC-ACTLab/crazyswarm
https://github.com/USC-ACTLab/crazyswarm

[SB16]

[SGO7)

[Shi07]

[Shn9s]

[SKHP97]

[SLMB*+17]

[ST10]

[TS17]

[WB97]

[Wil99)]

[WLBY6]

Ilana Segall and Alfred Bruckstein. On stochastic broadcast control of
swarms. In Marco Dorigo, Mauro Birattari, Xiaodong Li, Manuel Lépez-
Ibafiez, Kazuhiro Ohkura, Carlo Pinciroli, and Thomas Stiitzle, editors,
Swarm Intelligence, pages 257264, Cham, 2016. Springer International
Publishing.

Tal Shima and Oded M Golan. Head pursuit guidance. Journal of Guid-
ance, Control, and Dynamics, 30(5):1437-1444, 2007.

Tal Shima. Deviated velocity pursuit. In ATAA Guidance, Navigation and
Control Conference and Ezxhibit, page 6782, 2007.

Neryahu A Shneydor. Missile guidance and pursuit: kinematics, dynamics

and control. Elsevier, 1998.

Olaf Stursberg, Stefan Kowalewski, Ingo Hoffmann, and Joérg Preufig.
Comparing timed and hybrid automata as approximations of continuous
systems. In Panos Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sas-
try, editors, Hybrid Systems IV, pages 361-377, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

Jose Luis Sanchez-Lopez, Martin Molina, Hriday Bavle, Carlos Sampe-
dro, Ramén A. Sudrez Fernandez, and Pascual Campoy. A multi-layered
component-based approach for the development of aerial robotic systems:
The aerostack framework. Journal of Intelligent & Robotic Systems,
88(2):683-709, Dec 2017.

A. V. Savkin and H. Teimoori. Bearings-only guidance of a unicycle-like
vehicle following a moving target with a smaller minimum turning radius.
IEEE Transactions on Automatic Control, 55(10):2390-2395, 2010.

Twinkle Tripathy and Arpita Sinha. Unicycle with only range input: An
array of patterns. IEEE Transactions on Automatic Control, 63(5):1300—
1312, 2017.

Israel A Wagner and Alfred M Bruckstein. Row straightening via local
interactions. Clircuits, Systems and Signal Processing, 16(3):287-305, 1997.

U. Wilensky. Netlogo. software, Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL., 1999.
http://ccl.northwestern.edu/netlogo/.

Israel A. Wagner, Michael Lindenbaum, and Alfred M. Bruckstein. Smell
as a computational resource - A lesson we can learn from the ant. In
Fourth Israel Symposium on Theory of Computing and Systems, ISTCS,
pages 219-230. IEEE Computer Society, June 1996.

117

[WLB9Y]

[YWB03]

I.LA. Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering
by ant-robots using evaporating traces. IEEE Transactions on Robotics
and Automation, 15(5):918-933, 1999.

Vladimir Yanovski, Israel A Wagner, and Alfred M Bruckstein. A dis-
tributed ant algorithm for efficiently patrolling a network. Algorithmica,
37(3):165-186, 2003.

118

A9 PNN NMN DPONOPN N9 TIN N»Ya NP T NN NN NMIN NNYNIN NS TIN Nrya
(17 DY) NNYNIY DDMO ININAY TD »TD TY ,NNDNNNY NMN DONNY DMPY 1WA TN NN
JOIN-TND YNY YOIND GTINN 120NV NIN NIWRIND IPYN O NN NYON 29D 1900 MY
NI IN0) NMN IVN PYAN AYIAP MPNN DNIND DY NIV 120NV XN IYN PV
12101 AWNOY NN 1DIDN DV YN PIN AURD ,NN» IXIYNYD YIND TN 10100 Yy Na idya
212°02 22IN0ND POY ,ANIVNN NN DNXTR DN NOANND TP M DY JWrPN MYNNNI DN
DYTINN JOP VAP DPTIA 2IN0NY PHY ,NI0NN NN DN PN IDIDN TYNDY VAP DPTI DY
,0207991 D»I0MIN DN T Dy MITAR DIV 292 MPHNI NIND MIVA Pyan NN ONPNN
NOYAN MIIND NVWN TR DATID YTD MININN DOV VIDY TIN 21V NNY DMK DM DN

.AN2NN NN N2 NTNA

NINOY (NaNON M) AntAlate DWA MIDIN NVDN NTIAY NINAD N NN PIS YTPIM 9002
NTIAY2 D290 IO ,DPNINOVIN DYV 9ID (NPNPYAN) DY DY NN MY IWARD M Dy
192 1DINNY DMIYHN NNND DXIYAND 1IN TI2) D»VN MDD NN (MYPIVDIAN) MOV NONN
DN YD P2 THPNN NN NDNNAN 1) ,D°05N OV (MMINVINR) TPRNNYN NRNINNN DY DI NIONN
DNNYA NNAD DMY»N SNNANID TIYANND NDNIT VIDIYN L(MINPIIARN) 12 YYD (NNINaVI9N)
DIVANIN DYDY DPYNN MDA ,MIPNNI MIPA DNOY DVN DY NNININ NMVIND NP2
MAIYNN 95 RYY NIRON NIMOIN T ,PINID NP ,PINTND PPN PN N’ P2 NPN2
MOIYN IPNS NTIYNI NNTIAY NN NOYY TN MIYND NANINN NDNIN NN 1NIAND JPYIN
DMNIPINON PNAD MY AIWIARNY NOIYN 18T .J1PIDV 2AVNNN Y THY NVNPHL DIV MIN
TIPN NN PYTA VNNYND 18T [, NTY N0 D) PO [, NTaYNI NN 180D 0PN
MY 0) TN IOV ApNN2 TNd 1D N0 25V 55 May OMPYI MNNXNND PRI »Dan
11271 M2 MY NN DIVANNIY DNINND NVDIDN 07V 20D DY MNP 511722 NN Ny

v

N9V NI MR MNY NPYA 92y DX NANN ,TNYN DN VAN NN MY ,NNN NN OMNN P93
AND NANINND NOWN T DY

ii

Sl

900D PYND TN DY NIMDN NPT DYV 1210 DY N2 DWNINI MPOY 9T Nyl
THRN SUNO PTNO NOIVE NPND NDID INTON NN PYND TN DY 2PY9N 120NV NPPTHNY MIND
DAY MNNY D9 NOP MPRY NNNINND D22ND 191D NVIV NPYTH NMN ,NTIONN PO WD
M2 XD ,NNINID DOV NP N1 NYYTHAIY MIANY 9012 .NINK DAY 951 X NOVNNINN
08 DND N MINTY DY DTN IND INI0N IR PYND 100D YON PN NPYTH DMN OND

LDNIN DR

NNYNID 9700 DY NN INDNY DIPIND TNN .D7Y MIND P DIYTH MPIYN 9710 Nyl
SV NYDNY PN DM IR NIVY NNYN RN ORWYS [(Pierre Bouguer) n»a e o0
D990 NN XD ONN P INT DY DRPPLLPNNN .IMD NPIN DIDGND DXOINN O->TTIV NP0
YN NOY NAMI YN ,TPONININNT INNYND PIANSD NN NORYN DY NNYD IWIN DNYNHNI
IN9 RO 1INV 9TIN NPYA NN PY I 02 DINPPONNND 2NN 0001 DY .M DIV
PYRN PON NN (TPYPVIDIN) NOYAN NN DINNNN DVPIVIN N1IAD NVIVI POIY Mt NN

.17V 1DI0N P2

NN PN SVDNIOVT ST DY SNV TONND NOIYNN NNNIND DX N2 1D NIVOND 1t DOV
12100 YAV AN PNYAN NNN DY NVIAN NN DXTPNHN NN NIN ,IDI0N NRNMNNA Ty DIPNYN
DIPNA DNNNN NV DX NIANHD NYPN Dy OYONDN 1IN ,D9NN NN DY D NN INIvNnd
OND 1t NYPY DXONYNN NN ,NPPVIANN O2YN DANNIA .1DIDN NN NINPNY NNIND DY DONOND
12100 P2 PNIND ,N9TIN NPYTA 290 MINYNIY 120N PP PPN DYDY NOYa 7PVINT NN
NINYNY 090NN DYIIN NP1 ,NT00M 12900 HY IINN MIXNYHNN ANIND NINYHNN INI0nd
TPVIAIN VRN DY (MPNNP9NPN 2ANII) MNNNND AN DN .NNDMP 1D OX NNPIAN NPPTN 29D
NN AUND VNN DY 10T THIRD NPYN N, NININNN PN 29D MDPY MPONNS DXPoNN 1IN
P2 OPIVAND DIAYNI DINIANND VDX ,NDID .NINPHD APONNN IMN ININN-NNI NININI RN
DPIVORND DI2YNN NN NNXPH MNYPN ,MPoNNN 0N DNNSN 12 9I) DOVVLIVOY ,MPoNIN
ANNY 92PN I ,PODIPNIOT DXANND NNON IYYNY NN 2PNNN DN .INIYN MpSnnn pa

OIYNN 28N NPYNN Y21 ANND

DYINN MINNYA DY TURD ;N9 TI NPYL PNY NNAY 2T NININHDD NOWI WHRNWI X AT NN
,0°27 0’01 DMY»L DN J9IR-TN NN JIR-TH NIDPNR O»PNN 09N 0I0N OV
PO P WD DNDNY DD 53 IN 2DID) 257 DY MNINN TPON? NVIVA NN DINNN ONY 1IN
MINYNY 912 DPTI92 D0Y 19 MYSNNI P9 P AN NIV 515 [/nnTp” 130 IMN

DAN NMIN TN

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

AYNNN Y TND NONPO POV TIAON MONIH DY INPNINA NYYI IPNNN

NY-2N52) D002 IPNNY POMYI I2NNN NND DIINND MONS M NN MNHINA 0 PN
NP0 NP2 NPIDTYN DIPMINDI YN 12NN DY 0NOVPITH IPNN NAPN TONNa

David Dovrat and Alfred M. Bruckstein. On gathering and control of unicycle a(ge)nts with
crude sensing capabilities. IEEE Intelligent Systems, 32(6):40-46, 2017.

David Dovrat and Alfred M. Bruckstein. Antalate—a multi-agent autonomy framework.
Frontiers in Robotics and Al 8:264, 2021.

David Dovrat, Twinkle Tripathy, and Alfred M. Bruckstein. On tracking and capture in
proportional-control bearing-only unicycle pursuit. IEEE Control Systems Letters, 6:2132—
2137, 2022.

2TNONYNA N2TIN HPADIN NNHNN DY P1IDVD NTIN IN

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

N1YA PINAY DIVNIVIND NIINA NVVY
Y79

PPN DY NN

ININN NOAPY MWATN DY spPoN MM DYhH
DDA NONT

DT Y

SN YOV NON — 1DV VIDY YN
2022 a0y non 2"avnn vVav

Technion - Computer Science Department - Ph.D. Thesis PHD-2022-05 - 2022

N1YA PINAY DIVNIVIND NIINA NVVY
Y79

DT Y

	List of Tables
	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Method
	2.1 Dynamics of Pursuit
	2.2 Automaton Generating Algorithm

	3 Tracking and Capture in Proportional-Control Bearing-Only Unicycle Pursuit
	3.1 Preliminaries
	3.1.1 Pure Pursuit
	3.1.2 Proportional-Control Bearing-Only Unicycle Pursuit

	3.2 Lyapunov Function Approach
	3.3 Tracking
	3.4 Capture
	3.5 Simulation

	4 Homing of Unicycle Agents with Crude Sensing Capabilities
	4.1 Unicycle-Agents with Crude Sensing over a Limited Sector of Visibility
	4.1.1 UCSLSV Problem Statement

	4.2 System States
	4.3 State Transitions
	4.4 Paths and Cycles in G

	5 AntAlate
	5.1 Introduction
	5.2 Method
	5.2.1 AntAlate Core
	5.2.2 AntAlate Design Space

	5.3 Results
	5.4 Discussion

	6 Discussion and Conclusion
	Bibliography
	Hebrew Abstract

